Spaces:
Runtime error
Runtime error
hoshingakag
commited on
Commit
•
4919a07
1
Parent(s):
5927179
Update app.py
Browse files
app.py
CHANGED
@@ -1,434 +1,97 @@
|
|
1 |
-
import
|
2 |
-
import datetime
|
3 |
-
import asyncio
|
4 |
|
5 |
-
|
6 |
-
from pydantic import Extra
|
7 |
-
|
8 |
-
import wandb
|
9 |
-
from wandb.sdk.data_types.trace_tree import Trace
|
10 |
-
|
11 |
-
import pinecone
|
12 |
-
import google.generativeai as genai
|
13 |
-
|
14 |
-
from llama_index import (
|
15 |
-
ServiceContext,
|
16 |
-
PromptHelper,
|
17 |
-
VectorStoreIndex
|
18 |
-
)
|
19 |
-
from llama_index.vector_stores import PineconeVectorStore
|
20 |
-
from llama_index.storage.storage_context import StorageContext
|
21 |
-
from llama_index.node_parser import SimpleNodeParser
|
22 |
-
from llama_index.text_splitter import TokenTextSplitter
|
23 |
-
from llama_index.embeddings.base import BaseEmbedding
|
24 |
-
from llama_index.llms import (
|
25 |
-
CustomLLM,
|
26 |
-
CompletionResponse,
|
27 |
-
CompletionResponseGen,
|
28 |
-
LLMMetadata,
|
29 |
-
)
|
30 |
-
from llama_index.llms.base import llm_completion_callback
|
31 |
-
|
32 |
-
from llama_index.evaluation import SemanticSimilarityEvaluator
|
33 |
-
from llama_index.embeddings import SimilarityMode
|
34 |
|
|
|
|
|
35 |
import logging
|
36 |
-
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S %p', level=logging.INFO)
|
37 |
-
logger = logging.getLogger('llm')
|
38 |
-
|
39 |
-
prompt_template = """
|
40 |
-
[System]
|
41 |
-
You are in a role play of Gerard Lee.
|
42 |
-
Reply in no more than 7 complete sentences using content from [Context] only. Refer to [History] for seamless conversatation.
|
43 |
-
|
44 |
-
[History]
|
45 |
-
{context_history}
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
self,
|
54 |
-
model_name: str = 'models/embedding-gecko-001',
|
55 |
-
**kwargs: Any,
|
56 |
-
) -> None:
|
57 |
-
super().__init__(**kwargs)
|
58 |
-
self._model_name = model_name
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
return embeddings['embedding']
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
return embeddings['embedding']
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
]
|
79 |
-
return embeddings
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
) -> None:
|
96 |
-
super().__init__(**kwargs)
|
97 |
-
self._model_name = model_name
|
98 |
-
self._model_kwargs = model_kwargs
|
99 |
-
self._context_window = context_window
|
100 |
-
self._num_output = num_output
|
101 |
-
|
102 |
-
@property
|
103 |
-
def metadata(self) -> LLMMetadata:
|
104 |
-
"""Get LLM metadata."""
|
105 |
-
return LLMMetadata(
|
106 |
-
context_window=self._context_window,
|
107 |
-
num_output=self._num_output,
|
108 |
-
model_name=self._model_name
|
109 |
-
)
|
110 |
-
|
111 |
-
def gen_texts(self, prompt):
|
112 |
-
logging.debug(f"prompt: {prompt}")
|
113 |
-
response = genai.generate_text(
|
114 |
-
model=self._model_name,
|
115 |
-
prompt=prompt,
|
116 |
-
safety_settings=[
|
117 |
-
{
|
118 |
-
'category': genai.types.HarmCategory.HARM_CATEGORY_UNSPECIFIED,
|
119 |
-
'threshold': genai.types.HarmBlockThreshold.BLOCK_NONE,
|
120 |
-
},
|
121 |
-
],
|
122 |
-
**self._model_kwargs
|
123 |
)
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
text = self.gen_texts(prompt)
|
130 |
-
return CompletionResponse(text=text)
|
131 |
-
|
132 |
-
@llm_completion_callback()
|
133 |
-
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
|
134 |
-
raise NotImplementedError()
|
135 |
-
|
136 |
-
class LlamaIndexPaLM():
|
137 |
-
def __init__(
|
138 |
-
self,
|
139 |
-
emb_model: LlamaIndexPaLMEmbeddings = LlamaIndexPaLMEmbeddings(),
|
140 |
-
model: LlamaIndexPaLMText = LlamaIndexPaLMText(),
|
141 |
-
# prompt_template: str = prompt_template
|
142 |
-
) -> None:
|
143 |
-
self.emb_model = emb_model
|
144 |
-
self.llm = model
|
145 |
-
self.prompt_template = prompt_template
|
146 |
-
|
147 |
-
# Google Generative AI
|
148 |
-
genai.configure(api_key=os.environ['PALM_API_KEY'])
|
149 |
-
|
150 |
-
# Pinecone
|
151 |
-
pinecone.init(
|
152 |
-
api_key=os.environ['PINECONE_API_KEY'],
|
153 |
-
environment=os.getenv('PINECONE_ENV')
|
154 |
-
)
|
155 |
-
|
156 |
-
# W&B
|
157 |
-
wandb.init(project=os.getenv('WANDB_PROJECT'))
|
158 |
-
|
159 |
-
# model metadata
|
160 |
-
CONTEXT_WINDOW = os.getenv('CONTEXT_WINDOW', 8196)
|
161 |
-
NUM_OUTPUT = os.getenv('NUM_OUTPUT', 1024)
|
162 |
-
TEXT_CHUNK_SIZE = os.getenv('TEXT_CHUNK_SIZE', 512)
|
163 |
-
TEXT_CHUNK_OVERLAP = os.getenv('TEXT_CHUNK_OVERLAP', 20)
|
164 |
-
TEXT_CHUNK_OVERLAP_RATIO = os.getenv('TEXT_CHUNK_OVERLAP_RATIO', 0.1)
|
165 |
-
TEXT_CHUNK_SIZE_LIMIT = os.getenv('TEXT_CHUNK_SIZE_LIMIT', None)
|
166 |
-
|
167 |
-
self.node_parser = SimpleNodeParser.from_defaults(
|
168 |
-
text_splitter=TokenTextSplitter(
|
169 |
-
chunk_size=TEXT_CHUNK_SIZE, chunk_overlap=TEXT_CHUNK_OVERLAP
|
170 |
)
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
)
|
179 |
-
|
180 |
-
self.service_context = ServiceContext.from_defaults(
|
181 |
-
llm=self.llm,
|
182 |
-
embed_model=self.emb_model,
|
183 |
-
node_parser=self.node_parser,
|
184 |
-
prompt_helper=self.prompt_helper,
|
185 |
-
)
|
186 |
-
|
187 |
-
self.emd_evaluator = SemanticSimilarityEvaluator(
|
188 |
-
service_context=self.service_context,
|
189 |
-
similarity_mode=SimilarityMode.DEFAULT,
|
190 |
-
similarity_threshold=os.getenv('SIMILARITY_THRESHOLD', 0.7),
|
191 |
-
)
|
192 |
-
|
193 |
-
def get_index_from_pinecone(
|
194 |
-
self,
|
195 |
-
index_name: str = os.getenv('PINECONE_INDEX'),
|
196 |
-
index_namespace: str = os.getenv('PINECONE_NAMESPACE')
|
197 |
-
) -> None:
|
198 |
-
# Pinecone VectorStore
|
199 |
-
pinecone_index = pinecone.Index(index_name)
|
200 |
-
self.vector_store = PineconeVectorStore(pinecone_index=pinecone_index, add_sparse_vector=True, namespace=index_namespace)
|
201 |
-
self.pinecone_index = VectorStoreIndex.from_vector_store(self.vector_store, self.service_context)
|
202 |
-
self._index_name = index_name
|
203 |
-
self._index_namespace = index_namespace
|
204 |
-
return None
|
205 |
-
|
206 |
-
async def retrieve_context(
|
207 |
-
self,
|
208 |
-
query: str
|
209 |
-
) -> Dict[str, Union[str, int]]:
|
210 |
-
start_time = round(datetime.datetime.now().timestamp() * 1000)
|
211 |
-
response = await self.pinecone_index.as_query_engine(similarity_top_k=3).query(query)
|
212 |
-
end_time = round(datetime.datetime.now().timestamp() * 1000)
|
213 |
-
return {"result": response.response, "start": start_time, "end": end_time}
|
214 |
-
|
215 |
-
async def evaluate_context(
|
216 |
-
self,
|
217 |
-
query: str,
|
218 |
-
returned_context: str
|
219 |
-
) -> float:
|
220 |
-
result = await self.emd_evaluator.aevaluate(
|
221 |
-
response=returned_context,
|
222 |
-
reference=query,
|
223 |
-
)
|
224 |
-
return float(result.score)
|
225 |
-
|
226 |
-
def format_history_as_context(
|
227 |
-
self,
|
228 |
-
history: List[str],
|
229 |
-
) -> str:
|
230 |
-
format_chat_history = "\n".join(list(filter(None, history)))
|
231 |
-
return format_chat_history
|
232 |
-
|
233 |
-
async def generate_text(
|
234 |
-
self,
|
235 |
-
query: str,
|
236 |
-
history: List[str],
|
237 |
-
) -> str:
|
238 |
-
# get history
|
239 |
-
context_history = self.format_history_as_context(history=history)
|
240 |
-
|
241 |
-
# w&b trace start
|
242 |
-
start_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
243 |
-
root_span = Trace(
|
244 |
-
name="MetaAgent",
|
245 |
-
kind="agent",
|
246 |
-
start_time_ms=start_time_ms,
|
247 |
-
metadata={"user": "🤗 Space"},
|
248 |
-
)
|
249 |
-
|
250 |
-
# get retrieval context(s) from llama-index vectorstore index
|
251 |
-
# w&b trace retrieval & select agent
|
252 |
-
agent_span = Trace(
|
253 |
-
name="LlamaIndexAgent",
|
254 |
-
kind="agent",
|
255 |
-
start_time_ms=start_time_ms,
|
256 |
-
)
|
257 |
-
try:
|
258 |
-
# No history, single context retrieval without evaluation
|
259 |
-
if not history:
|
260 |
-
# w&b trace retrieval context
|
261 |
-
context_from_index_selected = self.retrieve_context(query)
|
262 |
-
agent_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
263 |
-
retrieval_span = Trace(
|
264 |
-
name="QueryRetrieval",
|
265 |
-
kind="chain",
|
266 |
-
status_code="success",
|
267 |
-
metadata={
|
268 |
-
"framework": "Llama-Index",
|
269 |
-
"index_type": "VectorStoreIndex",
|
270 |
-
"vector_store": "Pinecone",
|
271 |
-
"vector_store_index": self._index_name,
|
272 |
-
"vector_store_namespace": self._index_namespace,
|
273 |
-
"model_name": self.llm._model_name,
|
274 |
-
"custom_kwargs": self.llm._model_kwargs,
|
275 |
-
},
|
276 |
-
start_time_ms=start_time_ms,
|
277 |
-
end_time_ms=agent_end_time_ms,
|
278 |
-
inputs={"query": query},
|
279 |
-
outputs={"response": context_from_index_selected},
|
280 |
-
)
|
281 |
-
agent_span.add_child(retrieval_span)
|
282 |
-
# Has history, multiple context retrieval with async, then evaluation to determine which context to choose
|
283 |
-
else:
|
284 |
-
extended_query = f"{history[-1]}\n{query}"
|
285 |
-
result_query_only, result_extended_query = await asyncio.gather(
|
286 |
-
self.retrieve_context(query),
|
287 |
-
self.retrieve_context(extended_query)
|
288 |
)
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
name="QueryRetrieval",
|
293 |
-
kind="chain",
|
294 |
-
status_code="success",
|
295 |
-
metadata={
|
296 |
-
"framework": "Llama-Index",
|
297 |
-
"index_type": "VectorStoreIndex",
|
298 |
-
"vector_store": "Pinecone",
|
299 |
-
"vector_store_index": self._index_name,
|
300 |
-
"vector_store_namespace": self._index_namespace,
|
301 |
-
"model_name": self.llm._model_name,
|
302 |
-
"custom_kwargs": self.llm._model_kwargs,
|
303 |
-
},
|
304 |
-
start_time_ms=result_query_only.start,
|
305 |
-
end_time_ms=result_query_only.end,
|
306 |
-
inputs={"query": query},
|
307 |
-
outputs={"response": result_query_only.result},
|
308 |
-
)
|
309 |
-
agent_span.add_child(retrieval_query_span)
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
"index_type": "VectorStoreIndex",
|
319 |
-
"vector_store": "Pinecone",
|
320 |
-
"vector_store_index": self._index_name,
|
321 |
-
"vector_store_namespace": self._index_namespace,
|
322 |
-
"model_name": self.llm._model_name,
|
323 |
-
"custom_kwargs": self.llm._model_kwargs,
|
324 |
-
},
|
325 |
-
start_time_ms=result_extended_query.start,
|
326 |
-
end_time_ms=result_extended_query.end,
|
327 |
-
inputs={"query": extended_query},
|
328 |
-
outputs={"response": result_extended_query.result},
|
329 |
-
)
|
330 |
-
agent_span.add_child(retrieval_extended_query_span)
|
331 |
-
|
332 |
-
# w&b trace select context
|
333 |
-
eval_start_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
334 |
-
eval_context_query_only, eval_context_extended_query = await asyncio.gather(
|
335 |
-
self.evaluate_context(query, result_query_only.result),
|
336 |
-
self.evaluate_context(extended_query, result_extended_query.result)
|
337 |
-
)
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
else:
|
342 |
-
query_selected, context_from_index_selected = extended_query, result_extended_query.result
|
343 |
-
|
344 |
-
agent_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
345 |
-
eval_span = Trace(
|
346 |
-
name="EmbeddingsEvaluator",
|
347 |
-
kind="tool",
|
348 |
-
status_code="success",
|
349 |
-
metadata={
|
350 |
-
"framework": "Llama-Index",
|
351 |
-
"evaluator": "SemanticSimilarityEvaluator",
|
352 |
-
"similarity_mode": "DEFAULT",
|
353 |
-
"similarity_threshold": 0.7,
|
354 |
-
"similarity_results": {
|
355 |
-
"eval_context_query_only": eval_context_query_only,
|
356 |
-
"eval_context_extended_query": eval_context_extended_query,
|
357 |
-
},
|
358 |
-
"model_name": self.emb_model._model_name,
|
359 |
-
},
|
360 |
-
start_time_ms=eval_start_time_ms,
|
361 |
-
end_time_ms=agent_end_time_ms,
|
362 |
-
inputs={"query": query_selected},
|
363 |
-
outputs={"response": context_from_index_selected},
|
364 |
-
)
|
365 |
-
agent_span.add_child(eval_span)
|
366 |
-
|
367 |
-
except Exception as e:
|
368 |
-
logger.error(f"Exception {e} occured when retriving context\n")
|
369 |
-
|
370 |
-
llm_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
371 |
-
result = "Something went wrong. Please try again later."
|
372 |
-
root_span.add_inputs_and_outputs(
|
373 |
-
inputs={"query": query}, outputs={"result": result, "exception": e}
|
374 |
)
|
375 |
-
|
376 |
-
|
377 |
-
root_span.log(name="llm_app_trace")
|
378 |
-
return result
|
379 |
-
|
380 |
-
logger.info(f"Context from Llama-Index:\n{context_from_index_selected}\n")
|
381 |
-
|
382 |
-
agent_span.add_inputs_and_outputs(
|
383 |
-
inputs={"query": query}, outputs={"result": context_from_index_selected}
|
384 |
-
)
|
385 |
-
agent_span._span.status_code="success"
|
386 |
-
agent_span._span.end_time_ms = agent_end_time_ms
|
387 |
-
root_span.add_child(agent_span)
|
388 |
-
|
389 |
-
# generate text with prompt template to roleplay myself
|
390 |
-
prompt_with_context = self.prompt_template.format(context_history=context_history, context_from_index=context_from_index_selected, user_query=query)
|
391 |
-
try:
|
392 |
-
response = genai.generate_text(
|
393 |
-
prompt=prompt_with_context,
|
394 |
-
safety_settings=[
|
395 |
-
{
|
396 |
-
'category': genai.types.HarmCategory.HARM_CATEGORY_UNSPECIFIED,
|
397 |
-
'threshold': genai.types.HarmBlockThreshold.BLOCK_NONE,
|
398 |
-
},
|
399 |
-
],
|
400 |
-
temperature=0.9,
|
401 |
)
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
# w&b trace llm
|
415 |
-
llm_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
416 |
-
llm_span = Trace(
|
417 |
-
name="LLM",
|
418 |
-
kind="llm",
|
419 |
-
status_code=success_flag,
|
420 |
-
start_time_ms=agent_end_time_ms,
|
421 |
-
end_time_ms=llm_end_time_ms,
|
422 |
-
inputs={"input": prompt_with_context},
|
423 |
-
outputs={"result": result},
|
424 |
-
)
|
425 |
-
root_span.add_child(llm_span)
|
426 |
-
|
427 |
-
# w&b finalize trace
|
428 |
-
root_span.add_inputs_and_outputs(
|
429 |
-
inputs={"query": query}, outputs={"result": result}
|
430 |
-
)
|
431 |
-
root_span._span.end_time_ms = llm_end_time_ms
|
432 |
-
root_span.log(name="llm_app_trace")
|
433 |
-
|
434 |
-
return result
|
|
|
1 |
+
from src.llamaindex_palm import LlamaIndexPaLM, LlamaIndexPaLMText
|
|
|
|
|
2 |
|
3 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
from typing import List
|
6 |
+
import time
|
7 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Llama-Index LLM
|
10 |
+
llm_backend = LlamaIndexPaLMText(model_kwargs={'temperature': 0.8})
|
11 |
+
llm = LlamaIndexPaLM(model=llm_backend)
|
12 |
+
llm.get_index_from_pinecone()
|
13 |
|
14 |
+
# Gradio
|
15 |
+
chat_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
def clear_chat() -> None:
|
18 |
+
global chat_history
|
19 |
+
chat_history = []
|
20 |
+
return None
|
21 |
|
22 |
+
def get_chat_history(chat_history: List[str]) -> str:
|
23 |
+
ind = 0
|
24 |
+
formatted_chat_history = ""
|
25 |
+
for message in chat_history:
|
26 |
+
formatted_chat_history += f"User: \n{message}\n" if ind % 2 == 0 else f"Bot: \n{message}\n"
|
27 |
+
ind += 1
|
28 |
+
return formatted_chat_history
|
29 |
|
30 |
+
def generate_text(prompt: str, llamaindex_llm: LlamaIndexPaLM):
|
31 |
+
global chat_history
|
|
|
32 |
|
33 |
+
logger.info("Generating Message...")
|
34 |
+
logger.info(f"User Message:\n{prompt}\n")
|
|
|
35 |
|
36 |
+
result = llamaindex_llm.generate_text(prompt, chat_history)
|
37 |
+
chat_history.append(prompt)
|
38 |
+
chat_history.append(result)
|
|
|
|
|
39 |
|
40 |
+
logger.info(f"Replied Message:\n{result}\n")
|
41 |
+
return result
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S %p', level=logging.INFO)
|
45 |
+
logger = logging.getLogger('app')
|
46 |
+
|
47 |
+
try:
|
48 |
+
with gr.Blocks() as app:
|
49 |
+
chatbot = gr.Chatbot(
|
50 |
+
bubble_full_width=False,
|
51 |
+
container=True,
|
52 |
+
show_share_button=False,
|
53 |
+
avatar_images=[None, './asset/akag-g-only.png']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
)
|
55 |
+
msg = gr.Textbox(
|
56 |
+
show_label=False,
|
57 |
+
label="Type your message...",
|
58 |
+
placeholder="Hi Gerard, can you introduce yourself?",
|
59 |
+
container=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
+
with gr.Row():
|
62 |
+
clear = gr.Button("Clear", scale=1)
|
63 |
+
send = gr.Button(
|
64 |
+
value="",
|
65 |
+
variant="primary",
|
66 |
+
icon="./asset/send-message.png",
|
67 |
+
scale=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
)
|
69 |
|
70 |
+
def user(user_message, history):
|
71 |
+
return "", history + [[user_message, None]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
def bot(history):
|
74 |
+
bot_message = generate_text(history[-1][0], llm)
|
75 |
+
history[-1][1] = ""
|
76 |
+
for character in bot_message:
|
77 |
+
history[-1][1] += character
|
78 |
+
time.sleep(0.01)
|
79 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
82 |
+
bot, chatbot, chatbot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
)
|
84 |
+
send.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
85 |
+
bot, chatbot, chatbot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
+
clear.click(clear_chat, None, chatbot, queue=False)
|
88 |
+
|
89 |
+
gr.HTML("""
|
90 |
+
<p><center><i>Disclaimer: This is a RAG app for demostration purpose. LLM hallucination might occur.</i></center></p>
|
91 |
+
<p><center>Hosted on 🤗 Spaces. Powered by Google PaLM 🌴</center></p>
|
92 |
+
""")
|
93 |
+
|
94 |
+
app.queue()
|
95 |
+
app.launch()
|
96 |
+
except Exception as e:
|
97 |
+
logger.exception(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|