Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
from langchain import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import os | |
from PIL import Image | |
import json | |
# Retrieve the API keys and other secrets from the environment | |
api_key = os.environ.get('GOOGLE_API_KEY') | |
if api_key is None: | |
raise ValueError("No API key found. Please set the 'GOOGLE_API_KEY' environment variable.") | |
tracking_id = os.environ.get('TRACKING_ID') | |
if tracking_id is None: | |
raise ValueError("No tracking ID found. Please set the 'TRACKING_ID' environment variable.") | |
initial_prompt = os.environ.get('initial_prompt') | |
if initial_prompt is None: | |
raise ValueError("No initial prompt found. Please set the 'initial_prompt' environment variable.") | |
description_json = os.environ.get('description') | |
if description_json is None: | |
raise ValueError("No description found. Please set the 'description' environment variable.") | |
# Convert the description JSON string to a dictionary | |
description = json.loads(description_json) | |
# Set the API key for Google | |
os.environ['GOOGLE_API_KEY'] = api_key | |
# Initialize the OCR pipeline | |
ocr_pipe = pipeline("image-to-text", model="jinhybr/OCR-Donut-CORD") | |
# Initialize the LLM | |
llm_model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.4, top_p=0.85) | |
# Define the prompt template | |
prompt = PromptTemplate(input_variables=['task_type', 'task_number', 'question', 'content', 'description'], template=initial_prompt) | |
# Define the LLM chain | |
chain = LLMChain(llm=llm_model, prompt=prompt) | |
def evaluate(task_type, task_number, question, input_type, image=None, text=None): | |
if input_type == "Image" and image is not None: | |
# Ensure the image is in the correct format | |
if isinstance(image, str): | |
# Load the image if it's a URL or path | |
image = Image.open(image) | |
# Process the image to extract text | |
text_content = ocr_pipe(image) | |
content = text_content[0]['generated_text'] | |
elif input_type == "Text" and text is not None: | |
content = text | |
else: | |
return "Please provide the required input based on your selection." | |
# Retrieve the description for the given task type and number, or use a default value | |
task_description = description.get((task_type, task_number), "No description available for this task.") | |
# Run the chain | |
result = chain.run({ | |
'task_type': task_type, | |
'task_number': task_number, | |
'question': question, | |
'content': content, | |
'description': task_description | |
}) | |
return result | |
# Create the Gradio interface | |
inputs = [ | |
gr.Dropdown(choices=["Academic", "General"], label="Test Type", value="Academic"), | |
gr.Dropdown(choices=["Task 1", "Task 2"], label="Task Number", value="Task 1"), | |
gr.Textbox(label="Question", value=""), | |
gr.Radio(choices=["Image", "Text"], label="Input Type", value="Image"), | |
gr.Image(type="pil", label="Upload Image", visible=True), | |
gr.Textbox(label="Enter Text", visible=False) | |
] | |
def toggle_input(input_type): | |
if input_type == "Image": | |
return gr.update(visible=True), gr.update(visible=False) | |
else: | |
return gr.update(visible=False), gr.update(visible=True) | |
footer_html_with_analytics = f""" | |
<script async src="https://www.googletagmanager.com/gtag/js?id={tracking_id}"></script> | |
<script> | |
window.dataLayer = window.dataLayer || []; | |
function gtag(){{dataLayer.push(arguments);}} | |
gtag('js', new Date()); | |
gtag('config', '{tracking_id}'); | |
</script> | |
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css"> | |
<div style='text-align: center; margin-top: 20px;'> | |
<p>Developed by Hossein Mohseni</p> | |
<p>Contact Information:</p> | |
<p> | |
<a href='mailto:mohseni.h1999@gmail.com' style='margin-right: 10px;'> | |
<i class='fas fa-envelope'></i> | |
</a> | |
<a href='https://www.linkedin.com/in/mohsenihossein/' target='_blank' style='margin-right: 10px;'> | |
<i class='fab fa-linkedin'></i> | |
</a> | |
<a href='https://t.me/mohsenih1999' target='_blank'> | |
<i class='fab fa-telegram'></i> | |
</a> | |
</p> | |
<p>This application is a demonstration. To enhance and improve it, your feedback is highly appreciated.</p> | |
</div> | |
""" | |
outputs = gr.Markdown(label="Result") | |
# Define the Gradio Blocks and Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# IELTS Writing Evaluation") | |
with gr.Row(): | |
with gr.Column(): | |
input_type_radio = gr.Radio(choices=["Image", "Text"], label="Input Type", value="Image") | |
image_input = gr.Image(type="pil", label="Upload Image", visible=True) | |
text_input = gr.Textbox(label="Enter Text", visible=False) | |
input_type_radio.change(toggle_input, input_type_radio, [image_input, text_input]) | |
gr.Interface(fn=evaluate, inputs=inputs, outputs=outputs) | |
gr.HTML(footer_html_with_analytics) | |
# Launch the interface | |
demo.launch(share=True, debug=True) | |