Spaces:
Sleeping
Sleeping
File size: 10,925 Bytes
95760fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import moviepy.editor as mp
from flask import Flask, request, jsonify
from flask_cors import CORS
import requests
from io import BytesIO
import speech_recognition as sr
import io
import fitz # PyMuPDF for working with PDFs
import numpy as np
import cv2
from flask_caching import Cache
from utils.audioEmbedding.index import extract_audio_embeddings
from utils.videoEmbedding.index import get_video_embedding
from utils.imageToText.index import extract_text
from utils.sentanceEmbedding.index import get_text_vector , get_text_discription_vector
from utils.imageEmbedding.index import get_image_embedding
from utils.similarityScore import get_all_similarities
from utils.objectDetection.index import detect_objects
app = Flask(__name__)
cache = Cache(app, config={'CACHE_TYPE': 'simple'}) # You can choose a caching type based on your requirements
CORS(app)
import moviepy.editor as mp
import tempfile
def get_face_locations(binary_data):
# Convert binary image data to numpy array
print(1)
nparr = np.frombuffer(binary_data, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# Load the pre-trained face detection model
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Convert the image to grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# Extract face locations
print(2)
face_locations = []
for (x, y, w, h) in faces:
face_locations.append({"top": y, "right": x + w, "bottom": y + h, "left": x})
print(3)
return face_locations
def seperate_image_text_from_pdf(pdf_url):
# List to store page information
pages_info = []
# Fetch the PDF from the URL
response = requests.get(pdf_url)
if response.status_code == 200:
# Create a temporary file to save the PDF data
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
tmp_file.write(response.content)
tmp_file_path = tmp_file.name
# Open the PDF
pdf = fitz.open(tmp_file_path)
# Iterate through each page
for page_num in range(len(pdf)):
page = pdf.load_page(page_num)
# Extract text
text = page.get_text()
# Count images
image_list = page.get_images(full=True)
# Convert images to BytesIO and store in a list
images_bytes = []
for img_index, img_info in enumerate(image_list):
xref = img_info[0]
base_image = pdf.extract_image(xref)
image_bytes = base_image["image"]
images_bytes.append(image_bytes)
# Store page information in a dictionary
page_info = {
"pgno": page_num + 1,
"images": images_bytes,
"text": text
}
# Append page information to the list
pages_info.append(page_info)
# Close the PDF
pdf.close()
# Clean up the temporary file
import os
os.unlink(tmp_file_path)
else:
print("Failed to fetch the PDF from the URL.")
return pages_info
def pdf_image_text_embedding_and_text_embedding(pages_info):
# List to store page embeddings
page_embeddings = []
# Iterate through each page
for page in pages_info:
# Extract text from the page
text = page["text"]
# Extract images from the page
images = page["images"]
# List to store image embeddings
image_embeddings = []
# Iterate through each image
for image in images:
# Get the image embedding
image_embedding = get_image_embedding(image)
extracted_text = extract_text(image)
# Append the image embedding to the list
image_embeddings.append({"image_embedding": image_embedding.tolist() ,"extracted_text":extracted_text})
# Get the text embedding
# Store the page embeddings in a dictionary
page_embedding = {
"images": image_embeddings,
"text": text,
}
# Append the page embedding to the list
page_embeddings.append(page_embedding)
return page_embeddings
def separate_audio_from_video(video_url):
try:
# Load the video file
video = mp.VideoFileClip(video_url)
# Extract audio
audio = video.audio
# Create a temporary file to write the audio data
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio_file:
temp_audio_filename = temp_audio_file.name
# Write the audio data to the temporary file
audio.write_audiofile(temp_audio_filename)
# Read the audio data from the temporary file as bytes
with open(temp_audio_filename, "rb") as f:
audio_bytes = f.read()
return audio_bytes
except Exception as e:
print("An error occurred:", e)
@cache.cached(timeout=300)
@app.route('/get_text_embedding', methods=['POST'])
def get_text_embedding_route():
try:
text = request.json.get("text")
text_embedding = get_text_vector(text)
return jsonify({"text_embedding": text_embedding}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
@cache.cached(timeout=300)
@app.route('/extract_audio_text_and_embedding', methods=['POST'])
def get_audio_embedding_route():
audio_url = request.json.get('audio_url')
print(audio_url)
response = requests.get(audio_url)
audio_data = response.content
audio_embedding = extract_audio_embeddings(audio_data)
audio_embedding_list = audio_embedding
audio_file = BytesIO(audio_data)
r = sr.Recognizer()
with sr.AudioFile(audio_file) as source:
audio_data = r.record(source)
extracted_text = ""
try:
text = r.recognize_google(audio_data)
extracted_text = text
except Exception as e:
print(e)
return jsonify({"extracted_text": extracted_text, "audio_embedding": audio_embedding_list}), 200
# Route to get image embeddings
@cache.cached(timeout=300)
@app.route('/extract_image_text_and_embedding', methods=['POST'])
def get_image_embedding_route():
try:
image_url = request.json.get("imageUrl")
print(image_url)
response = requests.get(image_url)
if response.status_code != 200:
return jsonify({"error": "Failed to download image"}), 500
binary_data = response.content
extracted_text = extract_text(binary_data)
image_embedding = get_image_embedding(binary_data)
image_embedding_list = image_embedding.tolist()
return jsonify({"image_embedding": image_embedding_list,"extracted_text":extracted_text}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
# Route to get video embeddings
@cache.cached(timeout=300)
@app.route('/extract_video_text_and_embedding', methods=['POST'])
def get_video_embedding_route():
try:
video_url = request.json.get("videoUrl")
audio_data = separate_audio_from_video(video_url)
audio_embedding = extract_audio_embeddings(audio_data)
audio_embedding_list = audio_embedding
audio_file = io.BytesIO(audio_data)
r = sr.Recognizer()
with sr.AudioFile(audio_file) as source:
audio_data = r.record(source)
extracted_text = ""
try:
text = r.recognize_google(audio_data)
extracted_text = text
except Exception as e:
print(e)
video_embedding = get_video_embedding(video_url)
return jsonify({"video_embedding": video_embedding,"extracted_audio_text": extracted_text, "audio_embedding": audio_embedding_list}), 200
except Exception as e:
print(e)
return jsonify({"error": str(e)}), 500
@cache.cached(timeout=300)
@app.route('/extract_pdf_text_and_embedding', methods=['POST'])
def extract_pdf_text_and_embedding():
try:
pdf_url = request.json.get("pdfUrl")
print(1)
pages_info = seperate_image_text_from_pdf(pdf_url)
content = pdf_image_text_embedding_and_text_embedding(pages_info)
print(content)
return jsonify({"content": content}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
# Route to get text description embeddings
@cache.cached(timeout=300)
@app.route('/getTextDescriptionEmbedding', methods=['POST'])
def get_text_description_embedding_route():
try:
text = request.json.get("text")
text_description_embedding = get_text_discription_vector(text)
return jsonify({"text_description_embedding": text_description_embedding.tolist()}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
# Route to get object detection results
@cache.cached(timeout=300)
@app.route('/detectObjects', methods=['POST'])
def detect_objects_route():
try:
image_url = request.json.get("imageUrl")
response = requests.get(image_url)
if response.status_code != 200:
return jsonify({"error": "Failed to download image"}), 500
binary_data = response.content
object_detection_results = detect_objects(binary_data)
return jsonify({"object_detection_results": object_detection_results}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
# Route to get face locations
@cache.cached(timeout=300)
@app.route('/getFaceLocations', methods=['POST'])
def get_face_locations_route():
try:
image_url = request.json.get("imageUrl")
response = requests.get(image_url)
print(11)
if response.status_code != 200:
return jsonify({"error": "Failed to download image"}), 500
print(22)
binary_data = response.content
face_locations = get_face_locations(binary_data)
print(33)
print("ok",face_locations)
return jsonify({"face_locations": str(face_locations)}), 200
except Exception as e:
print(e)
return jsonify({"error": str(e)}), 500
# Route to get similarity score
@cache.cached(timeout=300)
@app.route('/getSimilarityScore', methods=['POST'])
def get_similarity_score_route():
try:
embedding1 = request.json.get("embedding1")
embedding2 = request.json.get("embedding2")
# Assuming embeddings are provided as lists
similarity_score = get_all_similarities(embedding1, embedding2)
return jsonify({"similarity_score": similarity_score}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/')
def hello():
return 'Hello, World!'
|