import pickle from utils.ImageAndTextEmbedding.index import getTextEmbedding with open("word2vec_model.pkl", "rb") as f: textEmbedding_model = pickle.load(f) def get_text_vector(example_text): # Tokenize the text into words words = example_text.lower().split() # Filter out words that are not in the vocabulary of the Word2Vec model words_in_vocab = [word for word in words if word in textEmbedding_model] # Calculate the average vector representation of the words if words_in_vocab: text_vector = sum(textEmbedding_model[word] for word in words_in_vocab) / len(words_in_vocab) return text_vector.tolist() else: return None def get_text_discription_vector(text): return getTextEmbedding(text) # Example usage: # example_text = "This is an example sentence." # text_vector = get_text_vector(example_text) # if text_vector: # print("Vector representation of the example text:", text_vector) # else: # print("None of the words in the example text are in the vocabulary of the Word2Vec model.") print("Text embedding model loaded successfully!")