|
from typing import List, Tuple, Optional |
|
|
|
import google.generativeai as genai |
|
import gradio as gr |
|
from PIL import Image |
|
|
|
TITLE = """<h1 align="center">Gemini Pro and Pro Vision via API 🚀</h1>""" |
|
DUPLICATE = """ |
|
<div style="text-align: center; display: flex; justify-content: center; align-items: center;"> |
|
<a href="https://huggingface.co/spaces/SkalskiP/ChatGemini?duplicate=true"> |
|
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space" style="margin-right: 10px;"> |
|
</a> |
|
<span>Duplicate the Space and run securely with your |
|
<a href="https://makersuite.google.com/app/apikey">GOOGLE API KEY</a>. |
|
</span> |
|
</div> |
|
""" |
|
|
|
print("google-generativeai:", genai.__version__) |
|
|
|
|
|
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: |
|
if not stop_sequences: |
|
return None |
|
return [sequence.strip() for sequence in stop_sequences.split(",")] |
|
|
|
|
|
def predict( |
|
google_key: str, |
|
text_prompt: str, |
|
image_prompt: Optional[Image.Image], |
|
temperature: float, |
|
max_output_tokens: int, |
|
stop_sequences: str, |
|
chatbot: List[Tuple[str, str]] |
|
) -> Tuple[str, List[Tuple[str, str]]]: |
|
if not google_key: |
|
raise ValueError( |
|
"GOOGLE_API_KEY is not set. " |
|
"Please follow the instructions in the README to set it up.") |
|
|
|
genai.configure(api_key=google_key) |
|
generation_config = genai.types.GenerationConfig( |
|
temperature=temperature, |
|
max_output_tokens=max_output_tokens, |
|
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences)) |
|
|
|
if image_prompt is None: |
|
model = genai.GenerativeModel('gemini-pro') |
|
response = model.generate_content( |
|
text_prompt, |
|
stream=True, |
|
generation_config=generation_config) |
|
response.resolve() |
|
else: |
|
model = genai.GenerativeModel('gemini-pro-vision') |
|
response = model.generate_content( |
|
[text_prompt, image_prompt], |
|
stream=True, |
|
generation_config=generation_config) |
|
response.resolve() |
|
|
|
chatbot.append((text_prompt, response.text)) |
|
return "", chatbot |
|
|
|
|
|
google_key_component = gr.Textbox( |
|
label="GOOGLE API KEY", |
|
value="", |
|
type="password", |
|
placeholder="...", |
|
info="You have to provide your own GOOGLE_API_KEY for this app to function properly", |
|
) |
|
|
|
image_prompt_component = gr.Image(type="pil", label="Image", scale=1) |
|
chatbot_component = gr.Chatbot(label='Gemini', scale=2) |
|
text_prompt_component = gr.Textbox( |
|
placeholder="Hi there!", |
|
label="Ask me anything and press Enter" |
|
) |
|
run_button_component = gr.Button() |
|
temperature_component = gr.Slider( |
|
minimum=0, |
|
maximum=1.0, |
|
value=0.4, |
|
step=0.05, |
|
label="Temperature", |
|
info=( |
|
"Temperature controls the degree of randomness in token selection. Lower " |
|
"temperatures are good for prompts that expect a true or correct response, " |
|
"while higher temperatures can lead to more diverse or unexpected results. " |
|
)) |
|
max_output_tokens_component = gr.Slider( |
|
minimum=1, |
|
maximum=2048, |
|
value=1024, |
|
step=1, |
|
label="Token limit", |
|
info=( |
|
"Token limit determines the maximum amount of text output from one prompt. A " |
|
"token is approximately four characters. The default value is 2048." |
|
)) |
|
stop_sequences_component = gr.Textbox( |
|
label="Add stop sequence", |
|
value="", |
|
type="text", |
|
placeholder="STOP, END", |
|
info=( |
|
"A stop sequence is a series of characters (including spaces) that stops " |
|
"response generation if the model encounters it. The sequence is not included " |
|
"as part of the response. You can add up to five stop sequences." |
|
)) |
|
|
|
inputs = [ |
|
google_key_component, |
|
text_prompt_component, |
|
image_prompt_component, |
|
temperature_component, |
|
max_output_tokens_component, |
|
stop_sequences_component, |
|
chatbot_component |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(TITLE) |
|
gr.HTML(DUPLICATE) |
|
with gr.Column(): |
|
google_key_component.render() |
|
with gr.Row(): |
|
image_prompt_component.render() |
|
chatbot_component.render() |
|
text_prompt_component.render() |
|
run_button_component.render() |
|
with gr.Accordion("Parameters", open=False): |
|
temperature_component.render() |
|
max_output_tokens_component.render() |
|
stop_sequences_component.render() |
|
|
|
run_button_component.click( |
|
fn=predict, |
|
inputs=inputs, |
|
outputs=[text_prompt_component, chatbot_component], |
|
) |
|
|
|
text_prompt_component.submit( |
|
fn=predict, |
|
inputs=inputs, |
|
outputs=[text_prompt_component, chatbot_component], |
|
) |
|
|
|
demo.queue(max_size=99).launch(debug=True) |
|
|