from typing import List, Tuple, Optional import google.generativeai as genai import gradio as gr from PIL import Image TITLE = """

Gemini Pro and Pro Vision via API 🚀

""" DUPLICATE = """
Duplicate Space Duplicate the Space and run securely with your GOOGLE API KEY.
""" print("google-generativeai:", genai.__version__) def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]: if not stop_sequences: return None return [sequence.strip() for sequence in stop_sequences.split(",")] def predict( google_key: str, text_prompt: str, image_prompt: Optional[Image.Image], temperature: float, max_output_tokens: int, stop_sequences: str, chatbot: List[Tuple[str, str]] ) -> Tuple[str, List[Tuple[str, str]]]: if not google_key: raise ValueError( "GOOGLE_API_KEY is not set. " "Please follow the instructions in the README to set it up.") genai.configure(api_key=google_key) generation_config = genai.types.GenerationConfig( temperature=temperature, max_output_tokens=max_output_tokens, stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences)) if image_prompt is None: model = genai.GenerativeModel('gemini-pro') response = model.generate_content( text_prompt, stream=True, generation_config=generation_config) response.resolve() else: model = genai.GenerativeModel('gemini-pro-vision') response = model.generate_content( [text_prompt, image_prompt], stream=True, generation_config=generation_config) response.resolve() chatbot.append((text_prompt, response.text)) return "", chatbot google_key_component = gr.Textbox( label="GOOGLE API KEY", value="", type="password", placeholder="...", info="You have to provide your own GOOGLE_API_KEY for this app to function properly", ) image_prompt_component = gr.Image(type="pil", label="Image", scale=1) chatbot_component = gr.Chatbot(label='Gemini', scale=2) text_prompt_component = gr.Textbox( placeholder="Hi there!", label="Ask me anything and press Enter" ) run_button_component = gr.Button() temperature_component = gr.Slider( minimum=0, maximum=1.0, value=0.4, step=0.05, label="Temperature", info=( "Temperature controls the degree of randomness in token selection. Lower " "temperatures are good for prompts that expect a true or correct response, " "while higher temperatures can lead to more diverse or unexpected results. " )) max_output_tokens_component = gr.Slider( minimum=1, maximum=2048, value=1024, step=1, label="Token limit", info=( "Token limit determines the maximum amount of text output from one prompt. A " "token is approximately four characters. The default value is 2048." )) stop_sequences_component = gr.Textbox( label="Add stop sequence", value="", type="text", placeholder="STOP, END", info=( "A stop sequence is a series of characters (including spaces) that stops " "response generation if the model encounters it. The sequence is not included " "as part of the response. You can add up to five stop sequences." )) inputs = [ google_key_component, text_prompt_component, image_prompt_component, temperature_component, max_output_tokens_component, stop_sequences_component, chatbot_component ] with gr.Blocks() as demo: gr.HTML(TITLE) gr.HTML(DUPLICATE) with gr.Column(): google_key_component.render() with gr.Row(): image_prompt_component.render() chatbot_component.render() text_prompt_component.render() run_button_component.render() with gr.Accordion("Parameters", open=False): temperature_component.render() max_output_tokens_component.render() stop_sequences_component.render() run_button_component.click( fn=predict, inputs=inputs, outputs=[text_prompt_component, chatbot_component], ) text_prompt_component.submit( fn=predict, inputs=inputs, outputs=[text_prompt_component, chatbot_component], ) demo.queue(max_size=99).launch(debug=True)