Spaces:
Sleeping
Sleeping
import PIL.Image | |
import gradio as gr | |
import base64 | |
import time | |
import os | |
import google.generativeai as genai | |
import pathlib | |
txt_model = genai.GenerativeModel('gemini-pro') | |
vis_model = genai.GenerativeModel('gemini-pro-vision') | |
import os | |
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') | |
genai.configure(api_key=GOOGLE_API_KEY) | |
# Image to Base 64 Converter | |
def image_to_base64(image_path): | |
with open(image_path, 'rb') as img: | |
encoded_string = base64.b64encode(img.read()) | |
return encoded_string.decode('utf-8') | |
# Function that takes User Inputs and displays it on ChatUI | |
def query_message(history,txt,img): | |
if not img: | |
history += [(txt,None)] | |
return history | |
base64 = image_to_base64(img) | |
data_url = f"data:image/jpeg;base64,{base64}" | |
history += [(f"{txt} ![]({data_url})", None)] | |
return history | |
# Function that takes User Inputs, generates Response and displays on Chat UI | |
def llm_response(history,text,img): | |
if not img: | |
response = txt_model.generate_content(text) | |
history += [(None,response.text)] | |
return history | |
else: | |
img = PIL.Image.open(img) | |
response = vis_model.generate_content([text,img]) | |
history += [(None,response.text)] | |
return history | |
# Function that takes User Inputs and displays it on ChatUI | |
def output_query_message(txt,img): | |
if not img: | |
return txt | |
base64 = image_to_base64(img) | |
data_url = f"data:image/jpeg;base64,{base64}" | |
outputText = [(f"{txt} ![]({data_url})", None)] | |
return outputText | |
# Function that takes User Inputs, generates Response and displays on Chat UI | |
def output_llm_response(text,img): | |
if not img: | |
response = txt_model.generate_content(text) | |
return response.text | |
else: | |
img = PIL.Image.open(img) | |
response = vis_model.generate_content([text,img]) | |
return response.text | |
# Interface Code- Selector method | |
def sentence_builder(animal, place): | |
return f"""how many {animal}s from the {place} are shown in the picture?""" | |
# gradio block | |
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1: | |
title = gr.Markdown("## COT ##") | |
with gr.Column(): | |
outputbox = gr.Textbox(label="AI prediction here...") | |
text_box = gr.Dropdown( | |
["what is in the image", | |
"provide alternative title for the image", | |
"how many birds can be seen in the picture?"], | |
label="Prompts", info="Will add more animals later!" | |
) | |
image_box = gr.Image(type="filepath") | |
btn = gr.Button("Submit") | |
clicked = btn.click(output_query_message, | |
[text_box,image_box], | |
outputbox | |
).then(output_llm_response, | |
[text_box,image_box], | |
outputbox | |
) | |
gr.Markdown(""" | |
# Multimodal Chain-of-Thought Reasoning in Language Models | |
<h5 align="center"><i>"Imagine learning a textbook without figures or tables."</i></h5> | |
Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output. | |
""") | |
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app2: | |
gr.Markdown("## MM 2BB ##") | |
with gr.Row(): | |
image_box = gr.Image(type="filepath") | |
chatbot = gr.Chatbot( | |
scale = 2, | |
height=750 | |
) | |
text_box = gr.Dropdown( | |
["what is in the image", | |
"provide alternative title for the image", | |
"how many birds can be seen in the picture?"], | |
label="Select--", | |
info="Will add more animals later!" | |
) | |
btn = gr.Button("Submit") | |
clicked = btn.click(query_message, | |
[chatbot,text_box,image_box], | |
chatbot | |
).then(llm_response, | |
[chatbot,text_box,image_box], | |
chatbot | |
) | |
with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo: | |
gr.Markdown("# DEMO #") | |
gr.TabbedInterface([app1, app2], ["APP #1", "APP #2"]) | |
demo.queue() | |
demo.launch() |