gemini-mm-cot / app.py
hsienchen's picture
Update app.py
7ec0cf0 verified
raw
history blame
4.5 kB
import PIL.Image
import gradio as gr
import base64
import time
import os
import google.generativeai as genai
import pathlib
txt_model = genai.GenerativeModel('gemini-pro')
vis_model = genai.GenerativeModel('gemini-pro-vision')
import os
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
# Image to Base 64 Converter
def image_to_base64(image_path):
with open(image_path, 'rb') as img:
encoded_string = base64.b64encode(img.read())
return encoded_string.decode('utf-8')
# Function that takes User Inputs and displays it on ChatUI
def query_message(history,txt,img):
if not img:
history += [(txt,None)]
return history
base64 = image_to_base64(img)
data_url = f"data:image/jpeg;base64,{base64}"
history += [(f"{txt} ![]({data_url})", None)]
return history
# Function that takes User Inputs, generates Response and displays on Chat UI
def llm_response(history,text,img):
if not img:
response = txt_model.generate_content(text)
history += [(None,response.text)]
return history
else:
img = PIL.Image.open(img)
response = vis_model.generate_content([text,img])
history += [(None,response.text)]
return history
# Function that takes User Inputs and displays it on ChatUI
def output_query_message(txt,img):
if not img:
return txt
base64 = image_to_base64(img)
data_url = f"data:image/jpeg;base64,{base64}"
outputText = [(f"{txt} ![]({data_url})", None)]
return outputText
# Function that takes User Inputs, generates Response and displays on Chat UI
def output_llm_response(text,img):
if not img:
response = txt_model.generate_content(text)
history = [(None,response.text)]
return history
else:
img = PIL.Image.open(img)
response = vis_model.generate_content([text,img])
history = [(None,response.text)]
return history
# Interface Code- Selector method
def sentence_builder(animal, place):
return f"""how many {animal}s from the {place} are shown in the picture?"""
# gradio block
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1:
title = gr.Markdown("## COT ##")
with gr.Row():
image_box = gr.Image(type="filepath")
outputbox = gr.Textbox(label="Output")
text_box = gr.Dropdown(
["what is in the image",
"provide alternative title for the image",
"how many birds can be seen in the picture?"],
label="Prompts", info="Will add more animals later!"
)
btn = gr.Button("Submit")
clicked = btn.click(output_query_message,
[text_box,image_box],
outputbox
).then(output_llm_response,
[text_box,image_box],
outputbox
)
gr.Markdown("""
# Multimodal Chain-of-Thought Reasoning in Language Models
<h5 align="center"><i>"Imagine learning a textbook without figures or tables."</i></h5>
Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output.
""")
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app2:
gr.Markdown("## MM 2BB ##")
with gr.Row():
image_box = gr.Image(type="filepath")
chatbot = gr.Chatbot(
scale = 2,
height=750
)
text_box = gr.Dropdown(
["what is in the image",
"provide alternative title for the image",
"how many birds can be seen in the picture?"],
label="Select--",
info="Will add more animals later!"
)
btn = gr.Button("Submit")
clicked = btn.click(query_message,
[chatbot,text_box,image_box],
chatbot
).then(llm_response,
[chatbot,text_box,image_box],
chatbot
)
with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo:
gr.Markdown("# DEMO #")
gr.TabbedInterface([app1, app2], ["APP #1", "APP #2"])
demo.queue()
demo.launch()