Spaces:
Sleeping
Sleeping
import PIL.Image | |
import gradio as gr | |
import base64 | |
import time | |
import os | |
import google.generativeai as genai | |
import pathlib | |
txt_model = genai.GenerativeModel('gemini-pro') | |
vis_model = genai.GenerativeModel('gemini-pro-vision') | |
txt_prompt_1 = 'I have upload the image. The image contains two sample images, A images contains 4 objects--Lens, Aducam Board, Anti-Static Strap, and Raspberry Pi Board. Determine if all 4 objects are also in Image B. If missing, list the names.' | |
txt_display_1 = 'name the missing items on B' | |
import os | |
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') | |
genai.configure(api_key=GOOGLE_API_KEY) | |
# Image to Base 64 Converter | |
def image_to_base64(image_path): | |
with open(image_path, 'rb') as img: | |
encoded_string = base64.b64encode(img.read()) | |
return encoded_string.decode('utf-8') | |
def output_query_message(img): | |
if not img: | |
return txt_prompt_1 | |
base64 = image_to_base64(img) | |
data_url = f"data:image/jpeg;base64,{base64}" | |
outputText = [(f"{txt_display_1} ![]({data_url})", None)] | |
return outputText | |
# Function that takes User Inputs, generates Response and displays on Chat UI | |
def output_llm_response(img): | |
if not img: | |
response = txt_model.generate_content(txt_prompt_1) | |
return response.text | |
else: | |
img = PIL.Image.open(img) | |
response = vis_model.generate_content([txt_prompt_1,img]) | |
return response.text | |
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1: | |
with gr.Column(): | |
outputbox = gr.Textbox(label="line clearance...") | |
image_box = gr.Image(type="filepath") | |
btn = gr.Button("Check This") | |
clicked = btn.click(output_query_message, | |
[image_box], | |
outputbox | |
).then(output_llm_response, | |
[image_box], | |
outputbox | |
) | |
gr.Markdown(""" | |
## SOP-302: Line Clearance ## | |
<h5 align="center"><i>"XXXX here here."</i></h5> | |
Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output. | |
""") | |
with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo: | |
gr.Markdown("## SOP Camera ##") | |
gr.TabbedInterface([app1, app1], ["Check #1", "Check #2"]) | |
demo.queue() | |
demo.launch() |