import PIL.Image import gradio as gr import base64 import time import os import google.generativeai as genai import pathlib txt_model = genai.GenerativeModel('gemini-pro') vis_model = genai.GenerativeModel('gemini-pro-vision') txt_prompt_1 = 'The image contains two sample images, A and B. Please provide the names for each item on Image B.' txt_display_1 = 'name the items on B?' import os GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY') genai.configure(api_key=GOOGLE_API_KEY) # Image to Base 64 Converter def image_to_base64(image_path): with open(image_path, 'rb') as img: encoded_string = base64.b64encode(img.read()) return encoded_string.decode('utf-8') # Function that takes User Inputs and displays it on ChatUI def query_message(history,txt,img): if not img: history += [(txt,None)] return history base64 = image_to_base64(img) data_url = f"data:image/jpeg;base64,{base64}" history += [(f"{txt} ![]({data_url})", None)] return history # Function that takes User Inputs, generates Response and displays on Chat UI def llm_response(history,text,img): if not img: response = txt_model.generate_content(text) history += [(None,response.text)] return history else: img = PIL.Image.open(img) response = vis_model.generate_content([text,img]) history += [(None,response.text)] return history # Function that takes User Inputs and displays it on ChatUI def output_query_message(img): if not img: return txt_prompt_1 base64 = image_to_base64(img) data_url = f"data:image/jpeg;base64,{base64}" outputText = [(f"{txt_display_1} ![]({data_url})", None)] return outputText # Function that takes User Inputs, generates Response and displays on Chat UI def output_llm_response(img): if not img: response = txt_model.generate_content(txt_prompt_1) return response.text else: img = PIL.Image.open(img) response = vis_model.generate_content([txt_prompt_1,img]) return response.text # Interface Code- Selector method def sentence_builder(animal, place): return f"""how many {animal}s from the {place} are shown in the picture?""" # gradio block with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1: with gr.Column(): outputbox = gr.Textbox(label="line clearance...") image_box = gr.Image(type="filepath") btn = gr.Button("Check This") clicked = btn.click(output_query_message, [image_box], outputbox ).then(output_llm_response, [image_box], outputbox ) gr.Markdown(""" ## SOP-302: Line Clearance ##
"XXXX here here."
Multimodal-CoT incorporates vision features in a decoupled training framework. The framework consists of two training stages: (i) rationale generation and (ii) answer inference. Both stages share the same model architecture but differ in the input and output. """) with gr.Blocks(theme='snehilsanyal/scikit-learn') as app2: gr.Markdown("## MM 2BB ##") with gr.Row(): image_box = gr.Image(type="filepath") chatbot = gr.Chatbot( scale = 2, height=750 ) text_box = gr.Dropdown( ["what is in the image", "provide alternative title for the image", "how many birds can be seen in the picture?"], label="Select--", info="Will add more animals later!" ) btn = gr.Button("Submit") clicked = btn.click(query_message, [chatbot,text_box,image_box], chatbot ).then(llm_response, [chatbot,text_box], chatbot ) with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo: gr.Markdown("## SOP Camera ##") gr.TabbedInterface([app1, app2], ["Check #1", "Check #2"]) demo.queue() demo.launch()