File size: 6,395 Bytes
930f89e
 
f22cb33
 
 
 
 
 
1fe660b
f22cb33
 
 
 
 
 
8c29b70
f22cb33
 
 
 
 
 
 
 
 
 
 
 
 
ba9c0ad
3c58186
 
b3c6c9d
3c58186
b3c6c9d
 
 
 
 
 
 
3c58186
 
 
b3c6c9d
 
3c58186
 
 
b3c6c9d
 
3c58186
d1bf604
3c58186
f22cb33
 
 
b34adbe
 
f22cb33
60361bd
f22cb33
 
 
 
 
 
 
930f89e
f22cb33
 
930f89e
f22cb33
 
 
 
930f89e
1fe660b
3c58186
 
 
 
 
 
 
 
 
 
 
a34f4ad
b34adbe
 
1fe660b
b34adbe
1fe660b
 
 
 
 
 
 
 
 
 
 
bd53307
f22cb33
98556ba
b8f63e5
2ad436c
8e025f4
2ad436c
27dba5b
b8f63e5
3a29aff
b8f63e5
60361bd
98556ba
1fe660b
60361bd
f22cb33
3a29aff
f22cb33
 
3a29aff
f22cb33
 
 
 
 
 
128b53d
 
 
2ad436c
8e025f4
2ad436c
27dba5b
 
3a29aff
128b53d
 
3c58186
128b53d
f22cb33
128b53d
3a29aff
 
128b53d
3a29aff
128b53d
3a29aff
128b53d
 
f22cb33
9baabee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29fc1b8
9baabee
 
29fc1b8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# refer to repo https://github.com/gradio-app/gradio/blob/main/demo/chatbot_multimodal/run.ipynb for enhancement

import PIL.Image
import gradio as gr
import base64
import time
import os
import google.generativeai as genai
import requests

import pathlib

txt_model = genai.GenerativeModel('gemini-pro')
vis_model = genai.GenerativeModel('gemini-pro-vision')

txt_prompt_1 = """The image contains the contents of a letter. I'd like to follow the request mentioned in the letter. Please provide 3 actionable items to assist me. When responding, use the following format:

# Sender and Subject #
1- Action 1 (no more than 20 words)
2- Action 2 (no more than 20 words)
3- Action 3 (no more than 20 words)

For example:
# From Richard regarding 'Shipping to Customer ABC' #
1- Pack Product A
2- Ship before 3:00 PM today
3- Notify Richard after shipment
"""

txt_display_1 = 'content of the letter: '


txt_prompt_2 = """First, to determine if the image is related to inventory and contains necessary information, consider the base reference of "a valid inventory table should be a table format with columns for Item ID, Quantity, ROQ (Replenishment Order Quantity), Item Images, and Contact Phone."

If the image does not align with this base reference, please respond accordingly with "not applicable, as the image appears not related or lacks necessary information."

If the image aligns with this base reference, proceed with the following steps to generate a response:

Second, check the quantity and ROQ (Replenishment Order Quantity) columns to identify items requiring reorder. Generate a response containing the list of all items below their respective ROQ levels in the following format:

** ROQ (MM/DD/YYYY) **
Item ID, Shortage (Quantity - ROQ), Contact Phone

For example:

** ROQ (02/19/2024) **
#11608, 70 (30-100), 1-858-7331029
#61785, 5 (5-10), 1-858-1233

When rendering the response, please ensure ALL items meeting the ROQ requirements are on the list. Also, be aware that there may be NO items whose quantity is below the ROQ.

"""
txt_display_2 = '--- '

import os
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
SMS_URL =os.getenv('SMS_URL')
SMS_TOK =os.getenv('SMS_TOK')

sms_text ="..."
# Image to Base 64 Converter
def image_to_base64(image_path):
    with open(image_path, 'rb') as img:
        encoded_string = base64.b64encode(img.read())
    return encoded_string.decode('utf-8')

# Function that takes User Inputs, generates Response and displays on Chat UI
def app1_response(img):
    if not img:
        response = txt_model.generate_content(txt_prompt_1)
        return response

    else:
        img = PIL.Image.open(img)
        response = vis_model.generate_content([txt_prompt_1,img])
        return response.text

def app2_response(img):
    if not img:
        response = txt_model.generate_content(txt_prompt_2)
        return response

    else:
        img = PIL.Image.open(img)
        response = vis_model.generate_content([txt_prompt_2,img])
        return response.text


# SMS service ends in March 2024, to restore service @Sinch Simple Text
def send_SMS(resp_text):
    url = SMS_URL
    headers = {
        "Authorization": SMS_TOK,
        "Content-Type": "application/json"
    }

    data = {
        "from": "12085686834",
        "to": ["18587331029"],
        "body": resp_text
    }

    response = requests.post(url, json=data, headers=headers)
    return response.text
    
# gradio block
with gr.Blocks() as app1:
    with gr.Column():
        gr.Markdown("## πŸ₯· to Samuraize ##")
        gr.Markdown("```for email βœ‰ and/or assigment descriptions ⌦, paste screenshot here...```")
        image_box = gr.Image(label="βœ‚ email screen", type="filepath")
        btn1 = gr.Button("Generate To-Dos β˜‘")
        out1 = gr.Textbox(label="here are the actionables...")
        btn2 = gr.Button("send to Mobile ↗️")
        out2 = gr.Textbox(label="response from SMS gateway...")
    
        btn1.click(fn=app1_response, inputs=[image_box], outputs=out1)
        btn2.click(fn=send_SMS, inputs=out1, outputs=out2)

    gr.Markdown("""
    # πŸ₯· Summerize eMail & Make a Plan #
    
    	- screen capture (Win + shift + S)
        - click β˜‘ to upload
        - await LLM Bot (Gemini, in this case) response
        - receive THREE actionable items
    
    [demo](https://youtu.be/lJ4jIAEVRNY)

    """)
    
with gr.Blocks() as app2:
    with gr.Column():
        gr.Markdown("## 🦫 Stock-Out Squirrel ##")
        gr.Markdown("```Win+Screenshot, paste ERP Inv ⌨ screenshot here...```")
        image_box = gr.Image(label="βœ‚ ERP screen",type="filepath")
        btn1 = gr.Button("Check ROQ β˜‘")
        out1 = gr.Textbox(label="here is the watch list πŸ“„...")
        btn2 = gr.Button("send out reminders ↗️")
        out2 = gr.Textbox(label="response or feed back?")
    
        btn1.click(fn=app2_response, inputs=[image_box], outputs=out1)
        btn2.click(fn=send_SMS, inputs=out1, outputs=out2)

    gr.Markdown("""
    # 🦫 Check Inventory ROQ #
    (contains bugs, more works needed)
    	- screen capture (Win + shift + S)
        - click β˜‘ to upload
        - await LLM Bot (Gemini, in this case) response
        - send ↗️ to related parties

    """)

with gr.Blocks() as app3:
    with gr.Column():
        gr.Markdown("## πŸ‡ Route Planning Rabbit ##")
        gr.Markdown("```Win+Screenshot, paste ERP Inv ⌨ screenshot here...```")
        image_box = gr.Image(label="βœ‚ Pick list",type="filepath")
        btn1 = gr.Button("Generate a Route Plan β˜‘")
        out1 = gr.Textbox(label="here is the watch list πŸ“„...")
        btn2 = gr.Button("send to Mobile ↗️")
        out2 = gr.Textbox(label="response or feed back?")
    
        btn1.click(fn=app2_response, inputs=[image_box], outputs=out1)
        btn2.click(fn=send_SMS, inputs=out1, outputs=out2)

    gr.Markdown("""
    # πŸ‡ Route Planning #
    (concept prototype)
    	- screen capture (Win + shift + S)
        - click β˜‘ to upload
        - await LLM Bot (Gemini, in this case) response
        - send ↗️ to related parties
        

    """)

with gr.Blocks() as demo:
    gr.Markdown("## To-Do Samuraizer πŸ₯· + Stock-Out Squirrel🦫 + Routing πŸ‡ ##")
    gr.TabbedInterface([app1, app2, app3], ["βž€ To-Do", "➁ SOS", "βž‚ Picking Routes"])

demo.queue()
demo.launch()