todo / app.py
hsienchen's picture
Update app.py
ac0e7b3 verified
raw
history blame
2.48 kB
# refer to repo https://github.com/gradio-app/gradio/blob/main/demo/chatbot_multimodal/run.ipynb for enhancement
import PIL.Image
import gradio as gr
import base64
import time
import os
import google.generativeai as genai
import pathlib
txt_model = genai.GenerativeModel('gemini-pro')
vis_model = genai.GenerativeModel('gemini-pro-vision')
txt_prompt_1 = """The image contains the contents of a letter. I'd like to follow the request mentioned in the letter. Please provide 3 actionable items to assist me. When responding, use the following format:
# Sender and Subject #
1- Action 1 (no more than 20 words)
2- Action 2 (no more than 20 words)
3- Action 3 (no more than 20 words)
For example:
# From Richard regarding 'Shipping to Customer ABC' #
1- Pack Product A
2- Ship before 3:00 PM today
3- Notify Richard after shipment
"""
txt_display_1 = 'content of the letter: '
import os
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
# Image to Base 64 Converter
def image_to_base64(image_path):
with open(image_path, 'rb') as img:
encoded_string = base64.b64encode(img.read())
return encoded_string.decode('utf-8')
def app1_query(img):
if not img:
return txt_prompt_1
base64 = image_to_base64(img)
data_url = f"data:image/jpeg;base64,{base64}"
outputText = [(f"{txt_display_1} ![]({data_url})", None)]
return outputText
# Function that takes User Inputs, generates Response and displays on Chat UI
def app1_response(img):
if not img:
response = txt_model.generate_content(txt_prompt_1)
return response
else:
img = PIL.Image.open(img)
response = vis_model.generate_content([txt_prompt_1,img])
return response.text
# gradio block
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1:
with gr.Column():
image_box = gr.Image(type="filepath")
outputbox = gr.Textbox(label="here are the plans...")
btn = gr.Button("Make a Plan")
clicked = btn.click(app1_response,
[image_box],
outputbox
)
gr.Markdown("""
# Make a Plan #
- screen capture (Win + shift + S)
- click **Make a Plan** to upload
- await LLM Bot (Gemini, in this case) response
- receive THREE actionable items
[demo](https://youtu.be/lJ4jIAEVRNY)
""")
app1.queue()
app1.launch()