Upload app (1).py
Browse files- app (1).py +150 -0
app (1).py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL.Image
|
2 |
+
import gradio as gr
|
3 |
+
import base64
|
4 |
+
import time
|
5 |
+
import os
|
6 |
+
import google.generativeai as genai
|
7 |
+
|
8 |
+
import pathlib
|
9 |
+
|
10 |
+
txt_model = genai.GenerativeModel('gemini-pro')
|
11 |
+
vis_model = genai.GenerativeModel('gemini-pro-vision')
|
12 |
+
|
13 |
+
txt_prompt_1 = """The image contains the contents of a letter. I'd like to follow the request mentioned in the letter. Please provide 3 actionable items to assist me. When responding, use the following format:
|
14 |
+
|
15 |
+
# Sender and Subject #
|
16 |
+
1- Action 1 (no more than 20 words)
|
17 |
+
2- Action 2 (no more than 20 words)
|
18 |
+
3- Action 3 (no more than 20 words)
|
19 |
+
|
20 |
+
For example:
|
21 |
+
# From Richard regarding 'Shipping to Customer ABC' #
|
22 |
+
1- Pack Product A
|
23 |
+
2- Ship before 3:00 PM today
|
24 |
+
3- Notify Richard after shipment
|
25 |
+
"""
|
26 |
+
|
27 |
+
txt_display_1 = 'content of email'
|
28 |
+
|
29 |
+
import os
|
30 |
+
|
31 |
+
GOOGLE_API_KEY=os.getenv('GOOGLE_API_KEY')
|
32 |
+
|
33 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
34 |
+
|
35 |
+
# Image to Base 64 Converter
|
36 |
+
def image_to_base64(image_path):
|
37 |
+
with open(image_path, 'rb') as img:
|
38 |
+
encoded_string = base64.b64encode(img.read())
|
39 |
+
return encoded_string.decode('utf-8')
|
40 |
+
|
41 |
+
# Function that takes User Inputs and displays it on ChatUI
|
42 |
+
def app2_query(history,txt,img):
|
43 |
+
if not img:
|
44 |
+
history += [(txt,None)]
|
45 |
+
return history
|
46 |
+
base64 = image_to_base64(img)
|
47 |
+
data_url = f"data:image/jpeg;base64,{base64}"
|
48 |
+
history += [(f"{txt} ![]({data_url})", None)]
|
49 |
+
return history
|
50 |
+
|
51 |
+
# Function that takes User Inputs, generates Response and displays on Chat UI
|
52 |
+
def app2_response(history,text,img):
|
53 |
+
if not img:
|
54 |
+
response = txt_model.generate_content(text)
|
55 |
+
history += [(None,response.text)]
|
56 |
+
return history
|
57 |
+
|
58 |
+
else:
|
59 |
+
img = PIL.Image.open(img)
|
60 |
+
response = vis_model.generate_content([text,img])
|
61 |
+
history += [(None,response.text)]
|
62 |
+
return history
|
63 |
+
|
64 |
+
# Function that takes User Inputs and displays it on ChatUI
|
65 |
+
|
66 |
+
def app1_query(img):
|
67 |
+
if not img:
|
68 |
+
return txt_prompt_1
|
69 |
+
base64 = image_to_base64(img)
|
70 |
+
data_url = f"data:image/jpeg;base64,{base64}"
|
71 |
+
outputText = [(f"{txt_display_1} ![]({data_url})", None)]
|
72 |
+
return outputText
|
73 |
+
|
74 |
+
# Function that takes User Inputs, generates Response and displays on Chat UI
|
75 |
+
def app1_response(img):
|
76 |
+
if not img:
|
77 |
+
response = txt_model.generate_content(txt_prompt_1)
|
78 |
+
return response
|
79 |
+
|
80 |
+
else:
|
81 |
+
img = PIL.Image.open(img)
|
82 |
+
response = vis_model.generate_content([txt_prompt_1,img])
|
83 |
+
return response.text
|
84 |
+
|
85 |
+
|
86 |
+
# Interface Code- Selector method
|
87 |
+
|
88 |
+
def sentence_builder(animal, place):
|
89 |
+
return f"""how many {animal}s from the {place} are shown in the picture?"""
|
90 |
+
|
91 |
+
# gradio block
|
92 |
+
|
93 |
+
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app1:
|
94 |
+
with gr.Column():
|
95 |
+
outputbox = gr.Textbox(label="here are the plans...")
|
96 |
+
image_box = gr.Image(type="filepath")
|
97 |
+
|
98 |
+
btn = gr.Button("Make a Plan")
|
99 |
+
clicked = btn.click(app1_query,
|
100 |
+
[image_box],
|
101 |
+
outputbox
|
102 |
+
).then(app1_response,
|
103 |
+
[image_box],
|
104 |
+
outputbox
|
105 |
+
)
|
106 |
+
gr.Markdown("""
|
107 |
+
# Make a Plan #
|
108 |
+
|
109 |
+
- screen capture (Win + shift + S)
|
110 |
+
- click **Make a Plan** to upload
|
111 |
+
- await LLM Bot (Gemini, in this case) response
|
112 |
+
- receive THREE actionable items
|
113 |
+
|
114 |
+
|
115 |
+
[demo](https://youtu.be/lJ4jIAEVRNY)
|
116 |
+
|
117 |
+
""")
|
118 |
+
|
119 |
+
with gr.Blocks(theme='snehilsanyal/scikit-learn') as app2:
|
120 |
+
gr.Markdown("check the image...")
|
121 |
+
with gr.Row():
|
122 |
+
image_box = gr.Image(type="filepath")
|
123 |
+
|
124 |
+
chatbot = gr.Chatbot(
|
125 |
+
scale = 2,
|
126 |
+
height=750
|
127 |
+
)
|
128 |
+
text_box = gr.Dropdown(
|
129 |
+
["what is in the image",
|
130 |
+
"provide alternative title for the image",
|
131 |
+
"how many parts can be seen in the picture?",
|
132 |
+
"check ID and expiration date"],
|
133 |
+
label="Select--",
|
134 |
+
info="ask Bot"
|
135 |
+
)
|
136 |
+
|
137 |
+
btn = gr.Button("Submit")
|
138 |
+
clicked = btn.click(app2_query,
|
139 |
+
[chatbot,text_box,image_box],
|
140 |
+
chatbot
|
141 |
+
).then(app2_response,
|
142 |
+
[chatbot,text_box],
|
143 |
+
chatbot
|
144 |
+
)
|
145 |
+
with gr.Blocks(theme='snehilsanyal/scikit-learn') as demo:
|
146 |
+
gr.Markdown("## Workflow Bot ##")
|
147 |
+
gr.TabbedInterface([app1, app2], ["Make a Plan!", "Check This!"])
|
148 |
+
|
149 |
+
demo.queue()
|
150 |
+
demo.launch()
|