Spaces:
Sleeping
Sleeping
File size: 12,627 Bytes
3c7a160 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
import copy
import numbers
from functools import partial
from typing import Any
from typing import Callable
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import torch
from AR.modules.activation import MultiheadAttention
from AR.modules.scaling import BalancedDoubleSwish
from torch import nn
from torch import Tensor
from torch.nn import functional as F
_shape_t = Union[int, List[int], torch.Size]
class LayerNorm(nn.Module):
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
normalized_shape: Tuple[int, ...]
eps: float
elementwise_affine: bool
def __init__(
self,
normalized_shape: _shape_t,
eps: float = 1e-5,
elementwise_affine: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
self.bias = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.elementwise_affine:
nn.init.ones_(self.weight)
nn.init.zeros_(self.bias)
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
return (
F.layer_norm(
input,
self.normalized_shape,
self.weight,
self.bias,
self.eps,
),
embedding,
)
assert embedding is None
return F.layer_norm(
input, self.normalized_shape, self.weight, self.bias, self.eps
)
def extra_repr(self) -> str:
return (
"{normalized_shape}, eps={eps}, "
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
)
class IdentityNorm(nn.Module):
def __init__(
self,
d_model: int,
eps: float = 1e-5,
device=None,
dtype=None,
) -> None:
super(IdentityNorm, self).__init__()
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
return input
assert embedding is None
return input
class TransformerEncoder(nn.Module):
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
"""
__constants__ = ["norm"]
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(
self,
src: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
return_layer_states: bool = False,
cache=None,
) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
return_layer_states: return layers' state (optional).
Shape:
see the docs in Transformer class.
"""
if return_layer_states:
layer_states = [] # layers' output
output = src
for mod in self.layers:
output = mod(
output,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
cache=cache,
)
layer_states.append(output[0])
if self.norm is not None:
output = self.norm(output)
return layer_states, output
output = src
for mod in self.layers:
output = mod(
output,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
cache=cache,
)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerEncoderLayer(nn.Module):
__constants__ = ["batch_first", "norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
batch_first: bool = False,
norm_first: bool = False,
device=None,
dtype=None,
linear1_self_attention_cls: nn.Module = nn.Linear,
linear2_self_attention_cls: nn.Module = nn.Linear,
linear1_feedforward_cls: nn.Module = nn.Linear,
linear2_feedforward_cls: nn.Module = nn.Linear,
layer_norm_cls: nn.Module = LayerNorm,
layer_norm_eps: float = 1e-5,
adaptive_layer_norm=False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(TransformerEncoderLayer, self).__init__()
# print(233333333333,d_model,nhead)
# import os
# os._exit(2333333)
self.self_attn = MultiheadAttention(
d_model, # 512 16
nhead,
dropout=dropout,
batch_first=batch_first,
linear1_cls=linear1_self_attention_cls,
linear2_cls=linear2_self_attention_cls,
**factory_kwargs,
)
# Implementation of Feedforward model
self.linear1 = linear1_feedforward_cls(
d_model, dim_feedforward, **factory_kwargs
)
self.dropout = nn.Dropout(dropout)
self.linear2 = linear2_feedforward_cls(
dim_feedforward, d_model, **factory_kwargs
)
self.norm_first = norm_first
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = _get_activation_fn(activation)
elif isinstance(activation, partial):
activation = activation(d_model)
elif activation == BalancedDoubleSwish:
activation = BalancedDoubleSwish(d_model)
# # We can't test self.activation in forward() in TorchScript,
# # so stash some information about it instead.
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
# self.activation_relu_or_gelu = 1
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
# self.activation_relu_or_gelu = 2
# else:
# self.activation_relu_or_gelu = 0
self.activation = activation
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
if layer_norm_cls == IdentityNorm:
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
else:
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
if adaptive_layer_norm:
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
else:
self.norm1 = norm1
self.norm2 = norm2
def __setstate__(self, state):
super(TransformerEncoderLayer, self).__setstate__(state)
if not hasattr(self, "activation"):
self.activation = F.relu
def forward(
self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
cache=None,
) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
x, stage_embedding = src, None
is_src_tuple = False
if isinstance(src, tuple):
x, stage_embedding = src
is_src_tuple = True
if src_key_padding_mask is not None:
_skpm_dtype = src_key_padding_mask.dtype
if _skpm_dtype != torch.bool and not torch.is_floating_point(
src_key_padding_mask
):
raise AssertionError(
"only bool and floating types of key_padding_mask are supported"
)
if self.norm_first:
x = x + self._sa_block(
self.norm1(x, stage_embedding),
src_mask,
src_key_padding_mask,
cache=cache,
)
x = x + self._ff_block(self.norm2(x, stage_embedding))
else:
x = self.norm1(
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
stage_embedding,
)
x = self.norm2(x + self._ff_block(x), stage_embedding)
if is_src_tuple:
return (x, stage_embedding)
return x
# self-attention block
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
cache=None,
) -> Tensor:
# print(x.shape,attn_mask.shape,key_padding_mask)
# torch.Size([1, 188, 512]) torch.Size([188, 188]) None
# import os
# os._exit(23333)
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,
cache=cache,
)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.project_layer = nn.Linear(d_model, 2 * d_model)
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return (weight * self.norm(input) + bias, embedding)
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return weight * self.norm(input) + bias
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|