|
import gradio as gr |
|
from torchvision.transforms import Compose, Resize, ToTensor, Normalize |
|
from PIL import Image |
|
from torchvision.utils import save_image |
|
|
|
from huggan.pytorch.pix2pix.modeling_pix2pix import GeneratorUNet |
|
|
|
transform = Compose( |
|
[ |
|
Resize((256, 256), Image.BICUBIC), |
|
ToTensor(), |
|
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
] |
|
) |
|
|
|
model = GeneratorUNet.from_pretrained('huggan/pix2pix-night2day') |
|
|
|
def predict_fn(img): |
|
inp = transform(img).unsqueeze(0) |
|
out = model(inp) |
|
save_image(out, 'out.png', normalize=True) |
|
return 'out.png' |
|
|
|
gr.Interface(predict_fn, inputs=gr.inputs.Image(type='pil'), outputs='image', examples=[['sample.jpg'], ['sample1.jpg'], ['sample2.jpg']]).launch() |