Spaces:
Runtime error
Runtime error
Switch to remove dataset storage
Browse files- app.py +15 -8
- background_task.py +14 -3
- env_elos/elo.csv +0 -5
- match_history/.gitkeep +0 -0
app.py
CHANGED
@@ -2,7 +2,7 @@ import json
|
|
2 |
import requests
|
3 |
from datasets import load_dataset
|
4 |
import gradio as gr
|
5 |
-
from huggingface_hub import HfApi, hf_hub_download
|
6 |
from huggingface_hub.repocard import metadata_load
|
7 |
import pandas as pd
|
8 |
from matchmaking import *
|
@@ -10,19 +10,24 @@ from background_task import init_matchmaking
|
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
block = gr.Blocks()
|
14 |
-
env = [
|
15 |
-
{
|
16 |
-
"name": "Soccer",
|
17 |
-
"global": None,
|
18 |
-
},
|
19 |
-
]
|
20 |
matchmaking = Matchmaking()
|
|
|
21 |
|
22 |
scheduler = BackgroundScheduler()
|
23 |
scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=15000)
|
24 |
scheduler.start()
|
25 |
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def update_elos():
|
28 |
matchmaking.read_history()
|
@@ -31,7 +36,9 @@ def update_elos():
|
|
31 |
|
32 |
|
33 |
def get_elo_data() -> pd.DataFrame:
|
34 |
-
|
|
|
|
|
35 |
return data
|
36 |
|
37 |
|
|
|
2 |
import requests
|
3 |
from datasets import load_dataset
|
4 |
import gradio as gr
|
5 |
+
from huggingface_hub import HfApi, hf_hub_download, Repository
|
6 |
from huggingface_hub.repocard import metadata_load
|
7 |
import pandas as pd
|
8 |
from matchmaking import *
|
|
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
|
12 |
|
13 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/CarlCochet/BotFightData"
|
14 |
+
ELO_FILENAME = "elo.csv"
|
15 |
+
ELO_DIR = "soccer_elo"
|
16 |
+
ELO_FILE = os.path.join(ELO_DIR, ELO_FILENAME)
|
17 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
18 |
+
|
19 |
block = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
matchmaking = Matchmaking()
|
21 |
+
api = HfApi()
|
22 |
|
23 |
scheduler = BackgroundScheduler()
|
24 |
scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=15000)
|
25 |
scheduler.start()
|
26 |
|
27 |
+
repo = Repository(
|
28 |
+
local_dir=ELO_DIR, clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
29 |
+
)
|
30 |
+
|
31 |
|
32 |
def update_elos():
|
33 |
matchmaking.read_history()
|
|
|
36 |
|
37 |
|
38 |
def get_elo_data() -> pd.DataFrame:
|
39 |
+
hf_hub_download(repo_id="CarlCochet/BotFightData", filename=ELO_FILENAME, subfolder=ELO_DIR)
|
40 |
+
with open(ELO_FILE, "r") as f:
|
41 |
+
data = pd.read_csv(f)
|
42 |
return data
|
43 |
|
44 |
|
background_task.py
CHANGED
@@ -1,10 +1,15 @@
|
|
|
|
1 |
import random
|
2 |
import pandas as pd
|
3 |
from datetime import datetime
|
4 |
from huggingface_hub import HfApi
|
5 |
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
class Model:
|
@@ -62,7 +67,6 @@ class Matchmaking:
|
|
62 |
self.matches["model2"].append(model2.name)
|
63 |
self.matches["result"].append(result)
|
64 |
self.matches["datetime"].append(datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
65 |
-
self.matches["env"].append(env)
|
66 |
|
67 |
def compute_elo(self, model1, model2, result):
|
68 |
""" Compute the new elo for each model based on a match result. """
|
@@ -106,7 +110,14 @@ class Matchmaking:
|
|
106 |
data_dict["games_played"].append(model.games_played)
|
107 |
|
108 |
df = pd.DataFrame(data_dict)
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
df_matches = pd.DataFrame(self.matches)
|
111 |
date = datetime.now()
|
112 |
df_matches.to_csv(f"match_history/{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv", index=False)
|
|
|
1 |
+
import os
|
2 |
import random
|
3 |
import pandas as pd
|
4 |
from datetime import datetime
|
5 |
from huggingface_hub import HfApi
|
6 |
|
7 |
|
8 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/CarlCochet/BotFightData"
|
9 |
+
ELO_FILENAME = "elo.csv"
|
10 |
+
ELO_DIR = "soccer_elo"
|
11 |
+
ELO_FILE = os.path.join(ELO_DIR, ELO_FILENAME)
|
12 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
13 |
|
14 |
|
15 |
class Model:
|
|
|
67 |
self.matches["model2"].append(model2.name)
|
68 |
self.matches["result"].append(result)
|
69 |
self.matches["datetime"].append(datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
|
|
70 |
|
71 |
def compute_elo(self, model1, model2, result):
|
72 |
""" Compute the new elo for each model based on a match result. """
|
|
|
110 |
data_dict["games_played"].append(model.games_played)
|
111 |
|
112 |
df = pd.DataFrame(data_dict)
|
113 |
+
fileobj = open('env_elos/elo.csv', 'w')
|
114 |
+
df.to_csv(fileobj, index=False)
|
115 |
+
api.upload_file(
|
116 |
+
fileobj,
|
117 |
+
"env_elos/elo.csv",
|
118 |
+
"CarlCochet/BotFights",
|
119 |
+
"Update elos",
|
120 |
+
)
|
121 |
df_matches = pd.DataFrame(self.matches)
|
122 |
date = datetime.now()
|
123 |
df_matches.to_csv(f"match_history/{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv", index=False)
|
env_elos/elo.csv
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
rank,author,model,elo,games_played
|
2 |
-
1,CarlCochet,model3,1431,4
|
3 |
-
2,CarlCochet,model1,1234,8
|
4 |
-
3,CarlCochet,model4,1200,0
|
5 |
-
4,CarlCochet,model2,1000,5
|
|
|
|
|
|
|
|
|
|
|
|
match_history/.gitkeep
DELETED
File without changes
|