Spaces:
Runtime error
Runtime error
Test async background task
Browse files- app.py +9 -4
- background_task.py +44 -15
app.py
CHANGED
@@ -6,8 +6,9 @@ from huggingface_hub import HfApi, hf_hub_download, Repository
|
|
6 |
from huggingface_hub.repocard import metadata_load
|
7 |
import pandas as pd
|
8 |
from matchmaking import *
|
9 |
-
from background_task import init_matchmaking
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
11 |
|
12 |
|
13 |
DATASET_REPO_URL = "https://huggingface.co/datasets/CarlCochet/BotFightData"
|
@@ -22,9 +23,13 @@ matchmaking = Matchmaking()
|
|
22 |
api = HfApi()
|
23 |
|
24 |
|
25 |
-
scheduler = BackgroundScheduler()
|
26 |
-
scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=15000)
|
27 |
-
scheduler.start()
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
def get_elo_data() -> pd.DataFrame:
|
|
|
6 |
from huggingface_hub.repocard import metadata_load
|
7 |
import pandas as pd
|
8 |
from matchmaking import *
|
9 |
+
from background_task import init_matchmaking, run_background_loop
|
10 |
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
+
import asyncio
|
12 |
|
13 |
|
14 |
DATASET_REPO_URL = "https://huggingface.co/datasets/CarlCochet/BotFightData"
|
|
|
23 |
api = HfApi()
|
24 |
|
25 |
|
26 |
+
# scheduler = BackgroundScheduler()
|
27 |
+
# scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=15000)
|
28 |
+
# scheduler.start()
|
29 |
+
|
30 |
+
loop = asyncio.get_event_loop()
|
31 |
+
loop.create_task(run_background_loop())
|
32 |
+
loop.run_forever()
|
33 |
|
34 |
|
35 |
def get_elo_data() -> pd.DataFrame:
|
background_task.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
import os
|
|
|
2 |
import random
|
|
|
|
|
3 |
import pandas as pd
|
4 |
from datetime import datetime
|
5 |
from huggingface_hub import HfApi, Repository
|
@@ -64,12 +67,39 @@ class Matchmaking:
|
|
64 |
while len(self.queue) > 1:
|
65 |
model1 = self.queue.pop(0)
|
66 |
model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
self.matches["model1"].append(model1.name)
|
70 |
self.matches["model2"].append(model2.name)
|
71 |
self.matches["result"].append(result)
|
72 |
-
self.matches["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def compute_elo(self, model1, model2, result):
|
75 |
""" Compute the new elo for each model based on a match result. """
|
@@ -118,34 +148,27 @@ class Matchmaking:
|
|
118 |
repo.push_to_hub(commit_message="Update ELO")
|
119 |
|
120 |
|
121 |
-
def match(model1, model2)
|
122 |
"""
|
123 |
-
!!! Current code is placeholder !!!
|
124 |
-
TODO: Launch a Unity process with the 2 models and get the result of the match
|
125 |
-
|
126 |
:param model1: First Model object
|
127 |
:param model2: Second Model object
|
128 |
:return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
|
129 |
"""
|
130 |
-
|
131 |
-
|
|
|
132 |
model1.games_played += 1
|
133 |
model2.games_played += 1
|
134 |
-
return result
|
135 |
|
136 |
|
137 |
def get_models_list() -> list:
|
138 |
"""
|
139 |
-
!!! Current code is placeholder !!!
|
140 |
-
TODO: Create a list of Model objects from the models found on the hub
|
141 |
-
|
142 |
:return: list of Model objects
|
143 |
"""
|
144 |
models = []
|
145 |
models_names = []
|
146 |
data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))
|
147 |
-
|
148 |
-
models_on_hub = []
|
149 |
for i, row in data.iterrows():
|
150 |
models.append(Model(row["author"], row["model"], row["elo"], row["games_played"]))
|
151 |
models_names.append(row["model"])
|
@@ -163,6 +186,12 @@ def init_matchmaking():
|
|
163 |
print("Matchmaking done ---", datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
164 |
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
if __name__ == "__main__":
|
167 |
print("It's running!")
|
168 |
api = HfApi()
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
import random
|
4 |
+
import asyncio
|
5 |
+
import subprocess
|
6 |
import pandas as pd
|
7 |
from datetime import datetime
|
8 |
from huggingface_hub import HfApi, Repository
|
|
|
67 |
while len(self.queue) > 1:
|
68 |
model1 = self.queue.pop(0)
|
69 |
model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
|
70 |
+
match(model1, model2)
|
71 |
+
self.load_results()
|
72 |
+
|
73 |
+
def load_results(self):
|
74 |
+
""" Load the match history from the hub. """
|
75 |
+
repo.git_pull()
|
76 |
+
results = pd.read_csv(
|
77 |
+
"https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
|
78 |
+
)
|
79 |
+
# while len(results) < len(self.matches["model1"]):
|
80 |
+
# time.sleep(60)
|
81 |
+
# results = pd.read_csv(
|
82 |
+
# "https://huggingface.co/datasets/huggingface-projects/temp-match-results/raw/main/results.csv"
|
83 |
+
# )
|
84 |
+
|
85 |
+
for i, row in results.iterrows():
|
86 |
+
model1 = row["model1"].split("/")
|
87 |
+
model2 = row["model2"].split("/")
|
88 |
+
model1 = self.find_model(model1[0], model1[1])
|
89 |
+
model2 = self.find_model(model2[0], model2[1])
|
90 |
+
result = row["result"]
|
91 |
+
self.compute_elo(row["model1"], row["model2"], row["result"])
|
92 |
self.matches["model1"].append(model1.name)
|
93 |
self.matches["model2"].append(model2.name)
|
94 |
self.matches["result"].append(result)
|
95 |
+
self.matches["timestamp"].append(row["timestamp"])
|
96 |
+
|
97 |
+
def find_model(self, author, name):
|
98 |
+
""" Find a model in the models list. """
|
99 |
+
for model in self.models:
|
100 |
+
if model.author == author and model.name == name:
|
101 |
+
return model
|
102 |
+
return None
|
103 |
|
104 |
def compute_elo(self, model1, model2, result):
|
105 |
""" Compute the new elo for each model based on a match result. """
|
|
|
148 |
repo.push_to_hub(commit_message="Update ELO")
|
149 |
|
150 |
|
151 |
+
def match(model1, model2):
|
152 |
"""
|
|
|
|
|
|
|
153 |
:param model1: First Model object
|
154 |
:param model2: Second Model object
|
155 |
:return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
|
156 |
"""
|
157 |
+
model1_id = model1.author + "/" + model1.name
|
158 |
+
model2_id = model2.author + "/" + model2.name
|
159 |
+
subprocess.run(["UnityEnvironment.exe", "-model1", model1_id, "-model2", model2_id])
|
160 |
model1.games_played += 1
|
161 |
model2.games_played += 1
|
|
|
162 |
|
163 |
|
164 |
def get_models_list() -> list:
|
165 |
"""
|
|
|
|
|
|
|
166 |
:return: list of Model objects
|
167 |
"""
|
168 |
models = []
|
169 |
models_names = []
|
170 |
data = pd.read_csv(os.path.join(DATASET_REPO_URL, "resolve", "main", ELO_FILENAME))
|
171 |
+
models_on_hub = api.list_models(filter=["reinforcement-learning", "ml-agents", "ML-Agents-SoccerTwos"])
|
|
|
172 |
for i, row in data.iterrows():
|
173 |
models.append(Model(row["author"], row["model"], row["elo"], row["games_played"]))
|
174 |
models_names.append(row["model"])
|
|
|
186 |
print("Matchmaking done ---", datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
187 |
|
188 |
|
189 |
+
async def run_background_loop():
|
190 |
+
while True:
|
191 |
+
print("It's running!", datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
192 |
+
await asyncio.sleep(60)
|
193 |
+
|
194 |
+
|
195 |
if __name__ == "__main__":
|
196 |
print("It's running!")
|
197 |
api = HfApi()
|