Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,650 Bytes
e8ea372 a101d9b e8ea372 8964ef4 a101d9b a4b71bb a101d9b 8964ef4 a101d9b e8ea372 a4b71bb 8964ef4 a101d9b e8ea372 8964ef4 a101d9b e8ea372 8964ef4 a4b71bb 8964ef4 a4b71bb 8964ef4 cf41b19 a4b71bb e8ea372 8964ef4 a101d9b e014e9a a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b e8ea372 a101d9b e8ea372 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 a101d9b 8964ef4 fe95fdf a101d9b a4b71bb e8ea372 fe95fdf e8ea372 a101d9b 8964ef4 a101d9b 8964ef4 e014e9a a101d9b a4b71bb a101d9b 8964ef4 28f1592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
import re
import aiohttp
import requests
import json
import subprocess
import asyncio
from io import BytesIO
import uuid
from math import ceil
from tqdm import tqdm
from pathlib import Path
from huggingface_hub import Repository
from PIL import Image, ImageOps
from fastapi import FastAPI, BackgroundTasks
from fastapi_utils.tasks import repeat_every
from fastapi.middleware.cors import CORSMiddleware
import boto3
from db import Database
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET_KEY = os.getenv('AWS_SECRET_KEY')
AWS_S3_BUCKET_NAME = os.getenv('AWS_S3_BUCKET_NAME')
HF_TOKEN = os.environ.get("HF_TOKEN")
S3_DATA_FOLDER = Path("sd-multiplayer-data")
DB_FOLDER = Path("diffusers-gallery-data")
s3 = boto3.client(service_name='s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_KEY)
repo = Repository(
local_dir=DB_FOLDER,
repo_type="dataset",
clone_from="huggingface-projects/diffusers-gallery-data",
use_auth_token=True,
)
repo.git_pull()
database = Database(DB_FOLDER)
async def upload_resize_image_url(session, image_url):
print(f"Uploading image {image_url}")
async with session.get(image_url) as response:
if response.status == 200 and response.headers['content-type'].startswith('image'):
image = Image.open(BytesIO(await response.read())).convert('RGB')
# resize image proportional
image = ImageOps.fit(image, (400, 400), Image.LANCZOS)
image_bytes = BytesIO()
image.save(image_bytes, format="JPEG")
image_bytes.seek(0)
fname = f'{uuid.uuid4()}.jpg'
s3.upload_fileobj(Fileobj=image_bytes, Bucket=AWS_S3_BUCKET_NAME, Key="diffusers-gallery/" + fname,
ExtraArgs={"ContentType": "image/jpeg", "CacheControl": "max-age=31536000"})
return fname
return None
def fetch_models(page=0):
response = requests.get(
f'https://huggingface.co/models-json?pipeline_tag=text-to-image&p={page}')
data = response.json()
return {
"models": [model for model in data['models'] if not model['private']],
"numItemsPerPage": data['numItemsPerPage'],
"numTotalItems": data['numTotalItems'],
"pageIndex": data['pageIndex']
}
def fetch_model_card(model):
response = requests.get(
f'https://huggingface.co/{model["id"]}/raw/main/README.md')
return response.text
async def find_image_in_model_card(text):
image_regex = re.compile(r'https?://\S+(?:png|jpg|jpeg|webp)')
urls = re.findall(image_regex, text)
if not urls:
return []
async with aiohttp.ClientSession() as session:
tasks = [asyncio.ensure_future(upload_resize_image_url(
session, image_url)) for image_url in urls[0:3]]
return await asyncio.gather(*tasks)
def run_inference(endpoint, img):
headers = {'Authorization': f'Bearer {HF_TOKEN}',
"X-Wait-For-Model": "true",
"X-Use-Cache": "true"}
response = requests.post(endpoint, headers=headers, data=img)
return response.json() if response.ok else []
async def get_all_models():
initial = fetch_models(0)
num_pages = ceil(initial['numTotalItems'] / initial['numItemsPerPage'])
print(
f"Total items: {initial['numTotalItems']} - Items per page: {initial['numItemsPerPage']}")
print(f"Found {num_pages} pages")
# fetch all models
models = []
for page in tqdm(range(0, num_pages)):
print(f"Fetching page {page} of {num_pages}")
page_models = fetch_models(page)
models += page_models['models']
with open(DB_FOLDER / "models_temp.json", "w") as f:
json.dump(models, f)
# fetch datacards and images
print(f"Found {len(models)} models")
final_models = []
for model in tqdm(models):
print(f"Fetching model {model['id']}")
model_card = fetch_model_card(model)
images = await find_image_in_model_card(model_card)
# style = await run_inference(f"https://api-inference.huggingface.co/models/{model['id']}", images[0])
style = []
# aesthetic = await run_inference(f"https://api-inference.huggingface.co/models/{model['id']}", images[0])
aesthetic = []
final_models.append(
{**model, "images": images, "style": style, "aesthetic": aesthetic}
)
return final_models
async def sync_data():
print("Fetching models")
models = await get_all_models()
with open(DB_FOLDER / "models.json", "w") as f:
json.dump(models, f)
# with open(DB_FOLDER / "models.json", "r") as f:
# models = json.load(f)
# open temp db
print("Updating database")
with database.get_db() as db:
cursor = db.cursor()
for model in models:
try:
cursor.execute("INSERT INTO models(id, data) VALUES (?, ?)",
[model['id'], json.dumps(model)])
except Exception as e:
print(model['id'], model)
db.commit()
print("Updating repository")
subprocess.Popen(
"git add . && git commit --amend -m 'update' && git push --force", cwd=DB_FOLDER, shell=True)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# @ app.get("/sync")
# async def sync(background_tasks: BackgroundTasks):
# background_tasks.add_task(sync_data)
# return "Synced data to huggingface datasets"
MAX_PAGE_SIZE = 30
@ app.get("/api/models")
def get_page(page: int = 1):
page = page if page > 0 else 1
with database.get_db() as db:
cursor = db.cursor()
cursor.execute("""
SELECT *, COUNT(*) OVER() AS total
FROM models
WHERE json_extract(data, '$.likes') > 5
ORDER BY datetime(json_extract(data, '$.lastModified')) DESC
LIMIT ? OFFSET ?
""", (MAX_PAGE_SIZE, (page - 1) * MAX_PAGE_SIZE))
results = cursor.fetchall()
total = results[0][3] if results else 0
total_pages = (total + MAX_PAGE_SIZE - 1) // MAX_PAGE_SIZE
return {
"models": [json.loads(result[1]) for result in results],
"totalPages": total_pages
}
@app.get("/")
def read_root():
return "Just a bot to sync data from diffusers gallery"
# @app.on_event("startup")
# @repeat_every(seconds=60 * 60 * 24, wait_first=True)
# async def repeat_sync():
# await sync_data()
# return "Synced data to huggingface datasets"
|