File size: 49,280 Bytes
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ab532
9b51db9
 
 
 
 
 
 
d8ab532
9b51db9
 
 
 
 
 
 
 
 
e1f2cc3
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1f2cc3
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
4b53042
9b51db9
 
 
 
 
 
 
 
 
4b53042
 
9b51db9
 
 
 
 
 
 
d3c28ec
9b51db9
 
 
 
 
 
 
 
 
 
66693d5
9b51db9
 
 
 
 
 
e1f2cc3
9b51db9
85cf91c
9b51db9
 
 
 
 
 
 
 
 
d3c28ec
9b51db9
e1f2cc3
 
9b51db9
 
 
 
 
e1f2cc3
9b51db9
 
 
335424f
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0803ab3
 
 
 
9b51db9
 
0803ab3
9b51db9
 
 
 
0803ab3
 
9b51db9
 
 
0803ab3
 
 
 
 
 
 
 
 
 
 
 
85cf91c
0803ab3
 
9b51db9
0803ab3
 
 
 
 
 
 
 
 
e1f2cc3
 
0803ab3
 
9b51db9
0803ab3
d8ab532
9b51db9
0803ab3
 
 
 
 
 
7c5239c
 
 
 
 
 
 
 
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
4b53042
e1f2cc3
 
 
 
 
9b51db9
e1f2cc3
 
 
9b51db9
 
4b53042
0803ab3
e1f2cc3
 
9b51db9
6a9c993
e1f2cc3
9b51db9
d3c28ec
 
 
 
 
 
 
e1f2cc3
9b51db9
4b53042
85cf91c
 
 
 
 
 
 
 
 
 
 
d8ab532
85cf91c
d3c28ec
 
 
 
85cf91c
 
 
 
 
d3c28ec
 
 
 
85cf91c
 
0803ab3
 
85cf91c
 
 
335424f
85cf91c
d3c28ec
 
 
 
85cf91c
 
7c5239c
 
 
 
 
 
 
 
 
85cf91c
 
7c5239c
 
 
 
 
 
 
 
 
 
 
85cf91c
 
7c5239c
 
 
 
d8ab532
4b53042
0803ab3
d8ab532
0803ab3
4b53042
d8ab532
 
 
 
0803ab3
d8ab532
4b53042
d8ab532
 
 
 
 
 
0803ab3
9b51db9
 
4b53042
9b51db9
 
 
4b53042
9b51db9
 
 
4b53042
9b51db9
 
 
 
d8ab532
9b51db9
 
 
 
 
 
 
 
 
 
d8ab532
9b51db9
 
 
 
 
 
 
 
e1f2cc3
 
 
 
 
9b51db9
4b53042
 
 
 
 
d3c28ec
 
 
 
4b53042
d3c28ec
 
 
 
 
 
4b53042
e1f2cc3
0803ab3
e1f2cc3
 
 
 
 
 
 
 
7c5239c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b51db9
4b53042
7c5239c
 
 
 
 
 
 
 
 
 
 
 
4b53042
 
9b51db9
6af9ef6
 
 
 
 
 
 
 
 
9b51db9
e1f2cc3
4b53042
e1f2cc3
4b53042
66693d5
4b53042
6af9ef6
4b53042
0803ab3
 
66693d5
 
 
 
 
 
0803ab3
e1f2cc3
4b53042
 
9b51db9
6af9ef6
7c5239c
 
 
 
 
 
 
6af9ef6
4b53042
 
9b51db9
 
 
 
 
 
7c5239c
 
 
 
 
 
9b51db9
66693d5
7c5239c
 
 
 
 
 
 
 
 
 
66693d5
9b51db9
 
 
 
 
4b53042
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b53042
d8ab532
 
9b51db9
 
 
 
 
 
0803ab3
 
4b53042
9b51db9
 
d8ab532
 
 
 
 
0803ab3
9b51db9
7c5239c
 
 
 
 
 
9b51db9
a2ae370
7c5239c
 
 
 
 
 
 
 
 
 
 
 
 
a2ae370
 
4b53042
e1f2cc3
 
4b53042
e1f2cc3
 
 
4b53042
e1f2cc3
 
 
 
 
4b53042
e1f2cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
e122a90
9b51db9
 
 
 
 
 
 
a2ae370
 
 
 
9b51db9
 
 
 
 
 
 
 
4b53042
9b51db9
 
 
 
 
 
 
 
4b53042
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b53042
9b51db9
 
 
 
 
 
 
 
5546565
 
9b51db9
 
 
 
 
 
 
 
 
 
4b53042
9b51db9
 
 
5546565
 
9b51db9
 
7c5239c
 
 
 
 
 
 
 
 
 
 
d3c28ec
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b53042
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ab532
9b51db9
 
 
 
 
 
 
 
 
 
 
d8ab532
 
 
 
 
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ab532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b51db9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import logging
import statistics
import torch
from os import mkdir
from os.path import exists, isdir
from os.path import join as pjoin

import nltk
import numpy as np
import pandas as pd
import plotly
import plotly.express as px
import plotly.figure_factory as ff
import plotly.graph_objects as go
import pyarrow.feather as feather
from datasets import load_from_disk
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer

from .dataset_utils import (
TOT_WORDS,
TOT_OPEN_WORDS,
    CNT,
    DEDUP_TOT,
    EMBEDDING_FIELD,
    LENGTH_FIELD,
    OUR_LABEL_FIELD,
    OUR_TEXT_FIELD,
    PROP,
    TEXT_NAN_CNT,
    TOKENIZED_FIELD,
    TXT_LEN,
    VOCAB,
    WORD,
    extract_field,
    load_truncated_dataset,
)
from .embeddings import Embeddings
from .npmi import nPMI
from .zipf import Zipf

pd.options.display.float_format = "{:,.3f}".format

logs = logging.getLogger(__name__)
logs.setLevel(logging.WARNING)
logs.propagate = False

if not logs.handlers:

    # Logging info to log file
    file = logging.FileHandler("./log_files/dataset_statistics.log")
    fileformat = logging.Formatter("%(asctime)s:%(message)s")
    file.setLevel(logging.INFO)
    file.setFormatter(fileformat)

    # Logging debug messages to stream
    stream = logging.StreamHandler()
    streamformat = logging.Formatter("[data_measurements_tool] %(message)s")
    stream.setLevel(logging.WARNING)
    stream.setFormatter(streamformat)

    logs.addHandler(file)
    logs.addHandler(stream)


# TODO: Read this in depending on chosen language / expand beyond english
nltk.download("stopwords")
_CLOSED_CLASS = (
    stopwords.words("english")
    + [
        "t",
        "n",
        "ll",
        "d",
        "wasn",
        "weren",
        "won",
        "aren",
        "wouldn",
        "shouldn",
        "didn",
        "don",
        "hasn",
        "ain",
        "couldn",
        "doesn",
        "hadn",
        "haven",
        "isn",
        "mightn",
        "mustn",
        "needn",
        "shan",
        "would",
        "could",
        "dont",
        "u",
    ]
    + [str(i) for i in range(0, 21)]
)
_IDENTITY_TERMS = [
    "man",
    "woman",
    "non-binary",
    "gay",
    "lesbian",
    "queer",
    "trans",
    "straight",
    "cis",
    "she",
    "her",
    "hers",
    "he",
    "him",
    "his",
    "they",
    "them",
    "their",
    "theirs",
    "himself",
    "herself",
]
# treating inf values as NaN as well
pd.set_option("use_inf_as_na", True)

_MIN_VOCAB_COUNT = 10
_TREE_DEPTH = 12
_TREE_MIN_NODES = 250
# as long as we're using sklearn - already pushing the resources
_MAX_CLUSTER_EXAMPLES = 5000
_NUM_VOCAB_BATCHES = 2000
_TOP_N = 100
_CVEC = CountVectorizer(token_pattern="(?u)\\b\\w+\\b", lowercase=True)

class DatasetStatisticsCacheClass:
    def __init__(
        self,
        cache_dir,
        dset_name,
        dset_config,
        split_name,
        text_field,
        label_field,
        label_names,
        calculation=None,
        use_cache=False,
    ):
        # This is only used for standalone runs for each kind of measurement.
        self.calculation = calculation
        self.our_text_field = OUR_TEXT_FIELD
        self.our_length_field = LENGTH_FIELD
        self.our_label_field = OUR_LABEL_FIELD
        self.our_tokenized_field = TOKENIZED_FIELD
        self.our_embedding_field = EMBEDDING_FIELD
        self.cache_dir = cache_dir
        # Use stored data if there; otherwise calculate afresh
        self.use_cache = use_cache
        ### What are we analyzing?
        # name of the Hugging Face dataset
        self.dset_name = dset_name
        # name of the dataset config
        self.dset_config = dset_config
        # name of the split to analyze
        self.split_name = split_name
        # TODO: Chould this be "feature" ?
        # which text fields are we analysing?
        self.text_field = text_field
        # which label fields are we analysing?
        self.label_field = label_field
        # what are the names of the classes?
        self.label_names = label_names
        ## Hugging Face dataset objects
        self.dset = None  # original dataset
        # HF dataset with all of the self.text_field instances in self.dset
        self.text_dset = None
        self.dset_peek = None
        # HF dataset with text embeddings in the same order as self.text_dset
        self.embeddings_dset = None
        # HF dataset with all of the self.label_field instances in self.dset
        self.label_dset = None
        ## Data frames
        # Tokenized text
        self.tokenized_df = None
        # save sentence length histogram in the class so it doesn't ge re-computed
        self.length_df = None
        self.fig_tok_length = None
        # Data Frame version of self.label_dset
        self.label_df = None
        # save label pie chart in the class so it doesn't ge re-computed
        self.fig_labels = None
        # Vocabulary with word counts in the dataset
        self.vocab_counts_df = None
        # Vocabulary filtered to remove stopwords
        self.vocab_counts_filtered_df = None
        self.sorted_top_vocab_df = None
        ## General statistics and duplicates
        self.total_words = 0
        self.total_open_words = 0
        # Number of NaN values (NOT empty strings)
        self.text_nan_count = 0
        # Number of text items that appear more than once in the dataset
        self.dedup_total = 0
        # Duplicated text items along with their number of occurences ("count")
        self.dup_counts_df = None
        self.avg_length = None
        self.std_length = None
        self.general_stats_dict = None
        self.num_uniq_lengths = 0
        # clustering text by embeddings
        # the hierarchical clustering tree is represented as a list of nodes,
        # the first is the root
        self.node_list = []
        # save tree figure in the class so it doesn't ge re-computed
        self.fig_tree = None
        # keep Embeddings object around to explore clusters
        self.embeddings = None
        # nPMI
        # Holds a nPMIStatisticsCacheClass object
        self.npmi_stats = None
        # TODO: Have lowercase be an option for a user to set.
        self.to_lowercase = True
        # The minimum amount of times a word should occur to be included in
        # word-count-based calculations (currently just relevant to nPMI)
        self.min_vocab_count = _MIN_VOCAB_COUNT
        # zipf
        self.z = None
        self.zipf_fig = None
        self.cvec = _CVEC
        # File definitions
        # path to the directory used for caching
        if not isinstance(text_field, str):
            text_field = "-".join(text_field)
        #if isinstance(label_field, str):
        #    label_field = label_field
        #else:
        #    label_field = "-".join(label_field)
        self.cache_path = pjoin(
            self.cache_dir,
            f"{dset_name}_{dset_config}_{split_name}_{text_field}", #{label_field},
        )
        if not isdir(self.cache_path):
            logs.warning("Creating cache directory %s." % self.cache_path)
            mkdir(self.cache_path)

        # Cache files not needed for UI
        self.dset_fid = pjoin(self.cache_path, "base_dset")
        self.tokenized_df_fid = pjoin(self.cache_path, "tokenized_df.feather")
        self.label_dset_fid = pjoin(self.cache_path, "label_dset")

        # Needed for UI -- embeddings
        self.text_dset_fid = pjoin(self.cache_path, "text_dset")
        # Needed for UI
        self.dset_peek_json_fid = pjoin(self.cache_path, "dset_peek.json")

        ## Label cache files.
        # Needed for UI
        self.fig_labels_json_fid = pjoin(self.cache_path, "fig_labels.json")

        ## Length cache files
        # Needed for UI
        self.length_df_fid = pjoin(self.cache_path, "length_df.feather")
        # Needed for UI
        self.length_stats_json_fid = pjoin(self.cache_path, "length_stats.json")
        self.vocab_counts_df_fid = pjoin(self.cache_path, "vocab_counts.feather")
        # Needed for UI
        self.dup_counts_df_fid = pjoin(self.cache_path, "dup_counts_df.feather")
        # Needed for UI
        self.fig_tok_length_fid = pjoin(self.cache_path, "fig_tok_length.json")

        ## General text stats
        # Needed for UI
        self.general_stats_json_fid = pjoin(self.cache_path, "general_stats_dict.json")
        # Needed for UI
        self.sorted_top_vocab_df_fid = pjoin(self.cache_path,
                                             "sorted_top_vocab.feather")
        ## Zipf cache files
        # Needed for UI
        self.zipf_fid = pjoin(self.cache_path, "zipf_basic_stats.json")
        # Needed for UI
        self.zipf_fig_fid = pjoin(self.cache_path, "zipf_fig.json")

        ## Embeddings cache files
        # Needed for UI
        self.node_list_fid = pjoin(self.cache_path, "node_list.th")
        # Needed for UI
        self.fig_tree_json_fid = pjoin(self.cache_path, "fig_tree.json")

        self.live = False

    def set_deployment(self, live=True):
        """
        Function that we can hit when we deploy, so that cache files are not
        written out/recalculated, but instead that part of the UI can be punted.
        """
        self.live = live

    def get_base_dataset(self):
        """Gets a pointer to the truncated base dataset object."""
        if not self.dset:
            self.dset = load_truncated_dataset(
                self.dset_name,
                self.dset_config,
                self.split_name,
                cache_name=self.dset_fid,
                use_cache=True,
                use_streaming=True,
            )

    def load_or_prepare_general_stats(self, save=True):
        """
        Content for expander_general_stats widget.
        Provides statistics for total words, total open words,
        the sorted top vocab, the NaN count, and the duplicate count.
        Args:

        Returns:

        """
        # General statistics
        if (
            self.use_cache
            and exists(self.general_stats_json_fid)
            and exists(self.dup_counts_df_fid)
            and exists(self.sorted_top_vocab_df_fid)
        ):
            logs.info('Loading cached general stats')
            self.load_general_stats()
        else:
            if not self.live:
                logs.info('Preparing general stats')
                self.prepare_general_stats()
                if save:
                    write_df(self.sorted_top_vocab_df, self.sorted_top_vocab_df_fid)
                    write_df(self.dup_counts_df, self.dup_counts_df_fid)
                    write_json(self.general_stats_dict, self.general_stats_json_fid)


    def load_or_prepare_text_lengths(self, save=True):
        """
        The text length widget relies on this function, which provides
        a figure of the text lengths, some text length statistics, and
        a text length dataframe to peruse.
        Args:
            save:
        Returns:

        """
        # Text length figure
        if (self.use_cache and exists(self.fig_tok_length_fid)):
            self.fig_tok_length = read_plotly(self.fig_tok_length_fid)
        else:
            if not self.live:
                self.prepare_fig_text_lengths()
                if save:
                    write_plotly(self.fig_tok_length, self.fig_tok_length_fid)

        # Text length dataframe
        if self.use_cache and exists(self.length_df_fid):
            self.length_df = feather.read_feather(self.length_df_fid)
        else:
            if not self.live:
                self.prepare_length_df()
                if save:
                    write_df(self.length_df, self.length_df_fid)

        # Text length stats.
        if self.use_cache and exists(self.length_stats_json_fid):
            with open(self.length_stats_json_fid, "r") as f:
                self.length_stats_dict = json.load(f)
            self.avg_length = self.length_stats_dict["avg length"]
            self.std_length = self.length_stats_dict["std length"]
            self.num_uniq_lengths = self.length_stats_dict["num lengths"]
        else:
            if not self.live:
                self.prepare_text_length_stats()
                if save:
                    write_json(self.length_stats_dict, self.length_stats_json_fid)

    def prepare_length_df(self):
        if not self.live:
            if self.tokenized_df is None:
                self.tokenized_df = self.do_tokenization()
            self.tokenized_df[LENGTH_FIELD] = self.tokenized_df[
                TOKENIZED_FIELD].apply(len)
            self.length_df = self.tokenized_df[
                [LENGTH_FIELD, OUR_TEXT_FIELD]].sort_values(
                by=[LENGTH_FIELD], ascending=True
            )

    def prepare_text_length_stats(self):
        if not self.live:
            if self.tokenized_df is None or LENGTH_FIELD not in self.tokenized_df.columns or self.length_df is None:
                self.prepare_length_df()
            avg_length = sum(self.tokenized_df[LENGTH_FIELD])/len(self.tokenized_df[LENGTH_FIELD])
            self.avg_length = round(avg_length, 1)
            std_length = statistics.stdev(self.tokenized_df[LENGTH_FIELD])
            self.std_length = round(std_length, 1)
            self.num_uniq_lengths = len(self.length_df["length"].unique())
            self.length_stats_dict = {"avg length": self.avg_length,
                                      "std length": self.std_length,
                                      "num lengths": self.num_uniq_lengths}

    def prepare_fig_text_lengths(self):
        if not self.live:
            if self.tokenized_df is None or LENGTH_FIELD not in self.tokenized_df.columns:
                self.prepare_length_df()
            self.fig_tok_length = make_fig_lengths(self.tokenized_df, LENGTH_FIELD)

    def load_or_prepare_embeddings(self, save=True):
        if self.use_cache and exists(self.node_list_fid) and exists(self.fig_tree_json_fid):
            self.node_list = torch.load(self.node_list_fid)
            self.fig_tree = read_plotly(self.fig_tree_json_fid)
        elif self.use_cache and exists(self.node_list_fid):
            self.node_list = torch.load(self.node_list_fid)
            self.fig_tree = make_tree_plot(self.node_list,
                                           self.text_dset)
            if save:
                write_plotly(self.fig_tree, self.fig_tree_json_fid)
        else:
            self.embeddings = Embeddings(self, use_cache=self.use_cache)
            self.embeddings.make_hierarchical_clustering()
            self.node_list = self.embeddings.node_list
            self.fig_tree = make_tree_plot(self.node_list,
                                           self.text_dset)
            if save:
                torch.save(self.node_list, self.node_list_fid)
                write_plotly(self.fig_tree, self.fig_tree_json_fid)

    # get vocab with word counts
    def load_or_prepare_vocab(self, save=True):
        """
        Calculates the vocabulary count from the tokenized text.
        The resulting dataframes may be used in nPMI calculations, zipf, etc.
        :param
        :return:
        """
        if (
            self.use_cache
            and exists(self.vocab_counts_df_fid)
        ):
            logs.info("Reading vocab from cache")
            self.load_vocab()
            self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
        else:
            logs.info("Calculating vocab afresh")
            if len(self.tokenized_df) == 0:
                self.tokenized_df = self.do_tokenization()
                if save:
                    logs.info("Writing out.")
                    write_df(self.tokenized_df, self.tokenized_df_fid)
            word_count_df = count_vocab_frequencies(self.tokenized_df)
            logs.info("Making dfs with proportion.")
            self.vocab_counts_df = calc_p_word(word_count_df)
            self.vocab_counts_filtered_df = filter_vocab(self.vocab_counts_df)
            if save:
                logs.info("Writing out.")
                write_df(self.vocab_counts_df, self.vocab_counts_df_fid)
        logs.info("unfiltered vocab")
        logs.info(self.vocab_counts_df)
        logs.info("filtered vocab")
        logs.info(self.vocab_counts_filtered_df)

    def load_vocab(self):
        with open(self.vocab_counts_df_fid, "rb") as f:
            self.vocab_counts_df = feather.read_feather(f)
        # Handling for changes in how the index is saved.
        self.vocab_counts_df = self._set_idx_col_names(self.vocab_counts_df)

    def load_or_prepare_text_duplicates(self, save=True):
        if self.use_cache and exists(self.dup_counts_df_fid):
            with open(self.dup_counts_df_fid, "rb") as f:
                self.dup_counts_df = feather.read_feather(f)
        elif self.dup_counts_df is None:
            if not self.live:
                self.prepare_text_duplicates()
                if save:
                    write_df(self.dup_counts_df, self.dup_counts_df_fid)
        else:
            if not self.live:
                # This happens when self.dup_counts_df is already defined;
                # This happens when general_statistics were calculated first,
                # since general statistics requires the number of duplicates
                if save:
                    write_df(self.dup_counts_df, self.dup_counts_df_fid)

    def load_general_stats(self):
        self.general_stats_dict = json.load(open(self.general_stats_json_fid, encoding="utf-8"))
        with open(self.sorted_top_vocab_df_fid, "rb") as f:
            self.sorted_top_vocab_df = feather.read_feather(f)
        self.text_nan_count = self.general_stats_dict[TEXT_NAN_CNT]
        self.dedup_total = self.general_stats_dict[DEDUP_TOT]
        self.total_words = self.general_stats_dict[TOT_WORDS]
        self.total_open_words = self.general_stats_dict[TOT_OPEN_WORDS]

    def prepare_general_stats(self):
        if not self.live:
            if self.tokenized_df is None:
                logs.warning("Tokenized dataset not yet loaded; doing so.")
                self.load_or_prepare_dataset()
            if self.vocab_counts_df is None:
                logs.warning("Vocab not yet loaded; doing so.")
                self.load_or_prepare_vocab()
            self.sorted_top_vocab_df = self.vocab_counts_filtered_df.sort_values(
                "count", ascending=False
            ).head(_TOP_N)
            self.total_words = len(self.vocab_counts_df)
            self.total_open_words = len(self.vocab_counts_filtered_df)
            self.text_nan_count = int(self.tokenized_df.isnull().sum().sum())
            self.prepare_text_duplicates()
            self.dedup_total = sum(self.dup_counts_df[CNT])
            self.general_stats_dict = {
                TOT_WORDS: self.total_words,
                TOT_OPEN_WORDS: self.total_open_words,
                TEXT_NAN_CNT: self.text_nan_count,
                DEDUP_TOT: self.dedup_total,
            }

    def prepare_text_duplicates(self):
        if not self.live:
            if self.tokenized_df is None:
                self.load_or_prepare_tokenized_df()
            dup_df = self.tokenized_df[
                self.tokenized_df.duplicated([OUR_TEXT_FIELD])]
            self.dup_counts_df = pd.DataFrame(
                dup_df.pivot_table(
                    columns=[OUR_TEXT_FIELD], aggfunc="size"
                ).sort_values(ascending=False),
                columns=[CNT],
            )
            self.dup_counts_df[OUR_TEXT_FIELD] = self.dup_counts_df.index.copy()

    def load_or_prepare_dataset(self, save=True):
        """
        Prepares the HF datasets and data frames containing the untokenized and
        tokenized text as well as the label values.
        self.tokenized_df is used further for calculating text lengths,
        word counts, etc.
        Args:
            save: Store the calculated data to disk.

        Returns:

        """
        logs.info("Doing text dset.")
        self.load_or_prepare_text_dset(save)
        logs.info("Doing tokenized dataframe")
        self.load_or_prepare_tokenized_df(save)
        logs.info("Doing dataset peek")
        self.load_or_prepare_dset_peek(save)

    def load_or_prepare_dset_peek(self, save=True):
        if self.use_cache and exists(self.dset_peek_json_fid):
            with open(self.dset_peek_json_fid, "r") as f:
                self.dset_peek = json.load(f)["dset peek"]
        else:
            if self.dset is None:
                self.get_base_dataset()
            self.dset_peek = self.dset[:100]
            if save:
                write_json({"dset peek": self.dset_peek}, self.dset_peek_json_fid)

    def load_or_prepare_tokenized_df(self, save=True):
        if (self.use_cache and exists(self.tokenized_df_fid)):
            self.tokenized_df = feather.read_feather(self.tokenized_df_fid)
        else:
            if not self.live:
                # tokenize all text instances
                self.tokenized_df = self.do_tokenization()
                if save:
                    logs.warning("Saving tokenized dataset to disk")
                    # save tokenized text
                    write_df(self.tokenized_df, self.tokenized_df_fid)

    def load_or_prepare_text_dset(self, save=True):
        if (self.use_cache and exists(self.text_dset_fid)):
            # load extracted text
            self.text_dset = load_from_disk(self.text_dset_fid)
            logs.warning("Loaded dataset from disk")
            logs.info(self.text_dset)
        # ...Or load it from the server and store it anew
        else:
            if not self.live:
                self.prepare_text_dset()
                if save:
                    # save extracted text instances
                    logs.warning("Saving dataset to disk")
                    self.text_dset.save_to_disk(self.text_dset_fid)

    def prepare_text_dset(self):
        if not self.live:
            self.get_base_dataset()
            # extract all text instances
            self.text_dset = self.dset.map(
                lambda examples: extract_field(
                    examples, self.text_field, OUR_TEXT_FIELD
                ),
                batched=True,
                remove_columns=list(self.dset.features),
            )

    def do_tokenization(self):
        """
        Tokenizes the dataset
        :return:
        """
        if self.text_dset is None:
            self.load_or_prepare_text_dset()
        sent_tokenizer = self.cvec.build_tokenizer()

        def tokenize_batch(examples):
            # TODO: lowercase should be an option
            res = {
                TOKENIZED_FIELD: [
                    tuple(sent_tokenizer(text.lower()))
                    for text in examples[OUR_TEXT_FIELD]
                ]
            }
            res[LENGTH_FIELD] = [len(tok_text) for tok_text in res[TOKENIZED_FIELD]]
            return res

        tokenized_dset = self.text_dset.map(
            tokenize_batch,
            batched=True,
            # remove_columns=[OUR_TEXT_FIELD], keep around to print
        )
        tokenized_df = pd.DataFrame(tokenized_dset)
        return tokenized_df

    def set_label_field(self, label_field="label"):
        """
        Setter for label_field. Used in the CLI when a user asks for information
         about labels, but does not specify the field;
         'label' is assumed as a default.
        """
        self.label_field = label_field

    def load_or_prepare_labels(self, save=True):
        # TODO: This is in a transitory state for creating fig cache.
        # Clean up to be caching and reading everything correctly.
        """
        Extracts labels from the Dataset
        :return:
        """
        # extracted labels
        if len(self.label_field) > 0:
            if self.use_cache and exists(self.fig_labels_json_fid):
                self.fig_labels = read_plotly(self.fig_labels_json_fid)
            elif self.use_cache and exists(self.label_dset_fid):
                # load extracted labels
                self.label_dset = load_from_disk(self.label_dset_fid)
                self.label_df = self.label_dset.to_pandas()
                self.fig_labels = make_fig_labels(
                    self.label_df, self.label_names, OUR_LABEL_FIELD
                )
                if save:
                    write_plotly(self.fig_labels, self.fig_labels_json_fid)
            else:
                if not self.live:
                    self.prepare_labels()
                    if save:
                        # save extracted label instances
                        self.label_dset.save_to_disk(self.label_dset_fid)
                        write_plotly(self.fig_labels, self.fig_labels_json_fid)

    def prepare_labels(self):
        if not self.live:
            self.get_base_dataset()
            self.label_dset = self.dset.map(
                lambda examples: extract_field(
                    examples, self.label_field, OUR_LABEL_FIELD
                ),
                batched=True,
                remove_columns=list(self.dset.features),
            )
            self.label_df = self.label_dset.to_pandas()
            self.fig_labels = make_fig_labels(
                self.label_df, self.label_names, OUR_LABEL_FIELD
            )

    def load_or_prepare_npmi(self):
        self.npmi_stats = nPMIStatisticsCacheClass(self, use_cache=self.use_cache)
        self.npmi_stats.load_or_prepare_npmi_terms()

    def load_or_prepare_zipf(self, save=True):
        # TODO: Current UI only uses the fig, meaning the self.z here is irrelevant
        # when only reading from cache. Either the UI should use it, or it should
        # be removed when reading in cache
        if self.use_cache and exists(self.zipf_fig_fid) and exists(self.zipf_fid):
            with open(self.zipf_fid, "r") as f:
                zipf_dict = json.load(f)
            self.z = Zipf()
            self.z.load(zipf_dict)
            self.zipf_fig = read_plotly(self.zipf_fig_fid)
        elif self.use_cache and exists(self.zipf_fid):
            # TODO: Read zipf data so that the vocab is there.
            with open(self.zipf_fid, "r") as f:
                zipf_dict = json.load(f)
            self.z = Zipf()
            self.z.load(zipf_dict)
            self.zipf_fig = make_zipf_fig(self.vocab_counts_df, self.z)
            if save:
                write_plotly(self.zipf_fig, self.zipf_fig_fid)
        else:
            self.z = Zipf(self.vocab_counts_df)
            self.zipf_fig = make_zipf_fig(self.vocab_counts_df, self.z)
            if save:
                write_zipf_data(self.z, self.zipf_fid)
                write_plotly(self.zipf_fig, self.zipf_fig_fid)

    def _set_idx_col_names(self, input_vocab_df):
        if input_vocab_df.index.name != VOCAB and VOCAB in input_vocab_df.columns:
            input_vocab_df = input_vocab_df.set_index([VOCAB])
            input_vocab_df[VOCAB] = input_vocab_df.index
        return input_vocab_df


class nPMIStatisticsCacheClass:
    """ "Class to interface between the app and the nPMI class
    by calling the nPMI class with the user's selections."""

    def __init__(self, dataset_stats, use_cache=False):
        self.live = dataset_stats.live
        self.dstats = dataset_stats
        self.pmi_cache_path = pjoin(self.dstats.cache_path, "pmi_files")
        if not isdir(self.pmi_cache_path):
            logs.warning("Creating pmi cache directory %s." % self.pmi_cache_path)
            # We need to preprocess everything.
            mkdir(self.pmi_cache_path)
        self.joint_npmi_df_dict = {}
        # TODO: Users ideally can type in whatever words they want.
        self.termlist = _IDENTITY_TERMS
        # termlist terms that are available more than _MIN_VOCAB_COUNT times
        self.available_terms = _IDENTITY_TERMS
        logs.info(self.termlist)
        self.use_cache = use_cache
        # TODO: Let users specify
        self.open_class_only = True
        self.min_vocab_count = self.dstats.min_vocab_count
        self.subgroup_files = {}
        self.npmi_terms_fid = pjoin(self.dstats.cache_path, "npmi_terms.json")

    def load_or_prepare_npmi_terms(self):
        """
        Figures out what identity terms the user can select, based on whether
        they occur more than self.min_vocab_count times
        :return: Identity terms occurring at least self.min_vocab_count times.
        """
        # TODO: Add the user's ability to select subgroups.
        # TODO: Make min_vocab_count here value selectable by the user.
        if (
            self.use_cache
            and exists(self.npmi_terms_fid)
            and json.load(open(self.npmi_terms_fid))["available terms"] != []
        ):
            available_terms = json.load(open(self.npmi_terms_fid))["available terms"]
        else:
            true_false = [
                term in self.dstats.vocab_counts_df.index for term in self.termlist
            ]
            word_list_tmp = [x for x, y in zip(self.termlist, true_false) if y]
            true_false_counts = [
                self.dstats.vocab_counts_df.loc[word, CNT] >= self.min_vocab_count
                for word in word_list_tmp
            ]
            available_terms = [
                word for word, y in zip(word_list_tmp, true_false_counts) if y
            ]
            logs.info(available_terms)
            with open(self.npmi_terms_fid, "w+") as f:
                json.dump({"available terms": available_terms}, f)
        self.available_terms = available_terms
        return available_terms

    def load_or_prepare_joint_npmi(self, subgroup_pair):
        """
        Run on-the fly, while the app is already open,
        as it depends on the subgroup terms that the user chooses
        :param subgroup_pair:
        :return:
        """
        # Canonical ordering for subgroup_list
        subgroup_pair = sorted(subgroup_pair)
        subgroup1 = subgroup_pair[0]
        subgroup2 = subgroup_pair[1]
        subgroups_str = "-".join(subgroup_pair)
        if not isdir(self.pmi_cache_path):
            logs.warning("Creating cache")
            # We need to preprocess everything.
            # This should eventually all go into a prepare_dataset CLI
            mkdir(self.pmi_cache_path)
        joint_npmi_fid = pjoin(self.pmi_cache_path, subgroups_str + "_npmi.csv")
        subgroup_files = define_subgroup_files(subgroup_pair, self.pmi_cache_path)
        # Defines the filenames for the cache files from the selected subgroups.
        # Get as much precomputed data as we can.
        if self.use_cache and exists(joint_npmi_fid):
            # When everything is already computed for the selected subgroups.
            logs.info("Loading cached joint npmi")
            joint_npmi_df = self.load_joint_npmi_df(joint_npmi_fid)
            npmi_display_cols = ['npmi-bias', subgroup1 + '-npmi', subgroup2 + '-npmi', subgroup1 + '-count', subgroup2 + '-count']
            joint_npmi_df = joint_npmi_df[npmi_display_cols]
            # When maybe some things have been computed for the selected subgroups.
        else:
            if not self.live:
                logs.info("Preparing new joint npmi")
                joint_npmi_df, subgroup_dict = self.prepare_joint_npmi_df(
                    subgroup_pair, subgroup_files
                )
                # Cache new results
                logs.info("Writing out.")
                for subgroup in subgroup_pair:
                    write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files)
                with open(joint_npmi_fid, "w+") as f:
                    joint_npmi_df.to_csv(f)
            else:
                joint_npmi_df = pd.DataFrame()
        logs.info("The joint npmi df is")
        logs.info(joint_npmi_df)
        return joint_npmi_df

    def load_joint_npmi_df(self, joint_npmi_fid):
        """
        Reads in a saved dataframe with all of the paired results.
        :param joint_npmi_fid:
        :return: paired results
        """
        with open(joint_npmi_fid, "rb") as f:
            joint_npmi_df = pd.read_csv(f)
        joint_npmi_df = self._set_idx_cols_from_cache(joint_npmi_df)
        return joint_npmi_df.dropna()

    def prepare_joint_npmi_df(self, subgroup_pair, subgroup_files):
        """
        Computs the npmi bias based on the given subgroups.
        Handles cases where some of the selected subgroups have cached nPMI
        computations, but other's don't, computing everything afresh if there
        are not cached files.
        :param subgroup_pair:
        :return: Dataframe with nPMI for the words, nPMI bias between the words.
        """
        subgroup_dict = {}
        # When npmi is computed for some (but not all) of subgroup_list
        for subgroup in subgroup_pair:
            logs.info("Load or failing...")
            # When subgroup npmi has been computed in a prior session.
            cached_results = self.load_or_fail_cached_npmi_scores(
                subgroup, subgroup_files[subgroup]
            )
            # If the function did not return False and we did find it, use.
            if cached_results:
                # FYI: subgroup_cooc_df, subgroup_pmi_df, subgroup_npmi_df = cached_results
                # Holds the previous sessions' data for use in this session.
                subgroup_dict[subgroup] = cached_results
        logs.info("Calculating for subgroup list")
        joint_npmi_df, subgroup_dict = self.do_npmi(subgroup_pair, subgroup_dict)
        return joint_npmi_df.dropna(), subgroup_dict

    # TODO: Update pairwise assumption
    def do_npmi(self, subgroup_pair, subgroup_dict):
        """
        Calculates nPMI for given identity terms and the nPMI bias between.
        :param subgroup_pair: List of identity terms to calculate the bias for
        :return: Subset of data for the UI
        :return: Selected identity term's co-occurrence counts with
                 other words, pmi per word, and nPMI per word.
        """
        logs.info("Initializing npmi class")
        npmi_obj = self.set_npmi_obj()
        # Canonical ordering used
        subgroup_pair = tuple(sorted(subgroup_pair))
        # Calculating nPMI statistics
        for subgroup in subgroup_pair:
            # If the subgroup data is already computed, grab it.
            # TODO: Should we set idx and column names similarly to how we set them for cached files?
            if subgroup not in subgroup_dict:
                logs.info("Calculating statistics for %s" % subgroup)
                vocab_cooc_df, pmi_df, npmi_df = npmi_obj.calc_metrics(subgroup)
                # Store the nPMI information for the current subgroups
                subgroup_dict[subgroup] = (vocab_cooc_df, pmi_df, npmi_df)
        # Pair the subgroups together, indexed by all words that
        # co-occur between them.
        logs.info("Computing pairwise npmi bias")
        paired_results = npmi_obj.calc_paired_metrics(subgroup_pair, subgroup_dict)
        UI_results = make_npmi_fig(paired_results, subgroup_pair)
        return UI_results, subgroup_dict

    def set_npmi_obj(self):
        """
        Initializes the nPMI class with the given words and tokenized sentences.
        :return:
        """
        npmi_obj = nPMI(self.dstats.vocab_counts_df, self.dstats.tokenized_df)
        return npmi_obj

    def load_or_fail_cached_npmi_scores(self, subgroup, subgroup_fids):
        """
        Reads cached scores from the specified subgroup files
        :param subgroup: string of the selected identity term
        :return:
        """
        # TODO: Ordering of npmi, pmi, vocab triple should be consistent
        subgroup_npmi_fid, subgroup_pmi_fid, subgroup_cooc_fid = subgroup_fids
        if (
            exists(subgroup_npmi_fid)
            and exists(subgroup_pmi_fid)
            and exists(subgroup_cooc_fid)
        ):
            logs.info("Reading in pmi data....")
            with open(subgroup_cooc_fid, "rb") as f:
                subgroup_cooc_df = pd.read_csv(f)
            logs.info("pmi")
            with open(subgroup_pmi_fid, "rb") as f:
                subgroup_pmi_df = pd.read_csv(f)
            logs.info("npmi")
            with open(subgroup_npmi_fid, "rb") as f:
                subgroup_npmi_df = pd.read_csv(f)
            subgroup_cooc_df = self._set_idx_cols_from_cache(
                subgroup_cooc_df, subgroup, "count"
            )
            subgroup_pmi_df = self._set_idx_cols_from_cache(
                subgroup_pmi_df, subgroup, "pmi"
            )
            subgroup_npmi_df = self._set_idx_cols_from_cache(
                subgroup_npmi_df, subgroup, "npmi"
            )
            return subgroup_cooc_df, subgroup_pmi_df, subgroup_npmi_df
        return False

    def _set_idx_cols_from_cache(self, csv_df, subgroup=None, calc_str=None):
        """
        Helps make sure all of the read-in files can be accessed within code
        via standardized indices and column names.
        :param csv_df:
        :param subgroup:
        :param calc_str:
        :return:
        """
        # The csv saves with this column instead of the index, so that's weird.
        if "Unnamed: 0" in csv_df.columns:
            csv_df = csv_df.set_index("Unnamed: 0")
            csv_df.index.name = WORD
        elif WORD in csv_df.columns:
            csv_df = csv_df.set_index(WORD)
            csv_df.index.name = WORD
        elif VOCAB in csv_df.columns:
            csv_df = csv_df.set_index(VOCAB)
            csv_df.index.name = WORD
        if subgroup and calc_str:
            csv_df.columns = [subgroup + "-" + calc_str]
        elif subgroup:
            csv_df.columns = [subgroup]
        elif calc_str:
            csv_df.columns = [calc_str]
        return csv_df

    def get_available_terms(self):
        return self.load_or_prepare_npmi_terms()

def dummy(doc):
    return doc

def count_vocab_frequencies(tokenized_df):
    """
    Based on an input pandas DataFrame with a 'text' column,
    this function will count the occurrences of all words.
    :return: [num_words x num_sentences] DataFrame with the rows corresponding to the
    different vocabulary words and the column to the presence (0 or 1) of that word.
    """

    cvec = CountVectorizer(
        tokenizer=dummy,
        preprocessor=dummy,
    )
    # We do this to calculate per-word statistics
    # Fast calculation of single word counts
    logs.info("Fitting dummy tokenization to make matrix using the previous tokenization")
    cvec.fit(tokenized_df[TOKENIZED_FIELD])
    document_matrix = cvec.transform(tokenized_df[TOKENIZED_FIELD])
    batches = np.linspace(0, tokenized_df.shape[0], _NUM_VOCAB_BATCHES).astype(int)
    i = 0
    tf = []
    while i < len(batches) - 1:
        logs.info("%s of %s vocab batches" % (str(i), str(len(batches))))
        batch_result = np.sum(
            document_matrix[batches[i] : batches[i + 1]].toarray(), axis=0
        )
        tf.append(batch_result)
        i += 1
    word_count_df = pd.DataFrame(
        [np.sum(tf, axis=0)], columns=cvec.get_feature_names()
    ).transpose()
    # Now organize everything into the dataframes
    word_count_df.columns = [CNT]
    word_count_df.index.name = WORD
    return word_count_df

def calc_p_word(word_count_df):
    # p(word)
    word_count_df[PROP] = word_count_df[CNT] / float(sum(word_count_df[CNT]))
    vocab_counts_df = pd.DataFrame(word_count_df.sort_values(by=CNT, ascending=False))
    vocab_counts_df[VOCAB] = vocab_counts_df.index
    return vocab_counts_df


def filter_vocab(vocab_counts_df):
    # TODO: Add warnings (which words are missing) to log file?
    filtered_vocab_counts_df = vocab_counts_df.drop(_CLOSED_CLASS,
                                                    errors="ignore")
    filtered_count = filtered_vocab_counts_df[CNT]
    filtered_count_denom = float(sum(filtered_vocab_counts_df[CNT]))
    filtered_vocab_counts_df[PROP] = filtered_count / filtered_count_denom
    return filtered_vocab_counts_df


## Figures ##

def write_plotly(fig, fid):
    write_json(plotly.io.to_json(fig), fid)

def read_plotly(fid):
    fig = plotly.io.from_json(json.load(open(fid, encoding="utf-8")))
    return fig

def make_fig_lengths(tokenized_df, length_field):
    fig_tok_length = px.histogram(
        tokenized_df, x=length_field, marginal="rug", hover_data=[length_field]
    )
    return fig_tok_length

def make_fig_labels(label_df, label_names, label_field):
    labels = label_df[label_field].unique()
    label_sums = [len(label_df[label_df[label_field] == label]) for label in labels]
    fig_labels = px.pie(label_df, values=label_sums, names=label_names)
    return fig_labels


def make_zipf_fig_ranked_word_list(vocab_df, unique_counts, unique_ranks):
    ranked_words = {}
    for count, rank in zip(unique_counts, unique_ranks):
        vocab_df[vocab_df[CNT] == count]["rank"] = rank
        ranked_words[rank] = ",".join(
            vocab_df[vocab_df[CNT] == count].index.astype(str)
        )  # Use the hovertext kw argument for hover text
    ranked_words_list = [wrds for rank, wrds in sorted(ranked_words.items())]
    return ranked_words_list


def make_npmi_fig(paired_results, subgroup_pair):
    subgroup1, subgroup2 = subgroup_pair
    UI_results = pd.DataFrame()
    if "npmi-bias" in paired_results:
        UI_results["npmi-bias"] = paired_results["npmi-bias"].astype(float)
    UI_results[subgroup1 + "-npmi"] = paired_results["npmi"][
        subgroup1 + "-npmi"
    ].astype(float)
    UI_results[subgroup1 + "-count"] = paired_results["count"][
        subgroup1 + "-count"
    ].astype(int)
    if subgroup1 != subgroup2:
        UI_results[subgroup2 + "-npmi"] = paired_results["npmi"][
            subgroup2 + "-npmi"
        ].astype(float)
        UI_results[subgroup2 + "-count"] = paired_results["count"][
            subgroup2 + "-count"
        ].astype(int)
    return UI_results.sort_values(by="npmi-bias", ascending=True)


def make_zipf_fig(vocab_counts_df, z):
    zipf_counts = z.calc_zipf_counts(vocab_counts_df)
    unique_counts = z.uniq_counts
    unique_ranks = z.uniq_ranks
    ranked_words_list = make_zipf_fig_ranked_word_list(
        vocab_counts_df, unique_counts, unique_ranks
    )
    zmin = z.get_xmin()
    logs.info("zipf counts is")
    logs.info(zipf_counts)
    layout = go.Layout(xaxis=dict(range=[0, 100]))
    fig = go.Figure(
        data=[
            go.Bar(
                x=z.uniq_ranks,
                y=z.uniq_counts,
                hovertext=ranked_words_list,
                name="Word Rank Frequency",
            )
        ],
        layout=layout,
    )
    fig.add_trace(
        go.Scatter(
            x=z.uniq_ranks[zmin : len(z.uniq_ranks)],
            y=zipf_counts[zmin : len(z.uniq_ranks)],
            hovertext=ranked_words_list[zmin : len(z.uniq_ranks)],
            line=go.scatter.Line(color="crimson", width=3),
            name="Zipf Predicted Frequency",
        )
    )
    # Customize aspect
    # fig.update_traces(marker_color='limegreen',
    #                  marker_line_width=1.5, opacity=0.6)
    fig.update_layout(title_text="Word Counts, Observed and Predicted by Zipf")
    fig.update_layout(xaxis_title="Word Rank")
    fig.update_layout(yaxis_title="Frequency")
    fig.update_layout(legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.10))
    return fig


def make_tree_plot(node_list, text_dset):
    nid_map = dict([(node["nid"], nid) for nid, node in enumerate(node_list)])

    for nid, node in enumerate(node_list):
        node["label"] = node.get(
            "label",
            f"{nid:2d} - {node['weight']:5d} items <br>"
            + "<br>".join(
                [
                    "> " + txt[:64] + ("..." if len(txt) >= 63 else "")
                    for txt in list(
                        set(text_dset.select(node["example_ids"])[OUR_TEXT_FIELD])
                    )[:5]
                ]
            ),
        )

    # make plot nodes
    # TODO: something more efficient than set to remove duplicates
    labels = [node["label"] for node in node_list]

    root = node_list[0]
    root["X"] = 0
    root["Y"] = 0

    def rec_make_coordinates(node):
        total_weight = 0
        add_weight = len(node["example_ids"]) - sum(
            [child["weight"] for child in node["children"]]
        )
        for child in node["children"]:
            child["X"] = node["X"] + total_weight
            child["Y"] = node["Y"] - 1
            total_weight += child["weight"] + add_weight / len(node["children"])
            rec_make_coordinates(child)

    rec_make_coordinates(root)

    E = []  # list of edges
    Xn = []
    Yn = []
    Xe = []
    Ye = []
    for nid, node in enumerate(node_list):
        Xn += [node["X"]]
        Yn += [node["Y"]]
        for child in node["children"]:
            E += [(nid, nid_map[child["nid"]])]
            Xe += [node["X"], child["X"], None]
            Ye += [node["Y"], child["Y"], None]

    # make figure
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(
            x=Xe,
            y=Ye,
            mode="lines",
            line=dict(color="rgb(210,210,210)", width=1),
            hoverinfo="none",
        )
    )
    fig.add_trace(
        go.Scatter(
            x=Xn,
            y=Yn,
            mode="markers",
            name="nodes",
            marker=dict(
                symbol="circle-dot",
                size=18,
                color="#6175c1",
                line=dict(color="rgb(50,50,50)", width=1)
                # '#DB4551',
            ),
            text=labels,
            hoverinfo="text",
            opacity=0.8,
        )
    )
    return fig


## Input/Output ###


def define_subgroup_files(subgroup_list, pmi_cache_path):
    """
    Sets the file ids for the input identity terms
    :param subgroup_list: List of identity terms
    :return:
    """
    subgroup_files = {}
    for subgroup in subgroup_list:
        # TODO: Should the pmi, npmi, and count just be one file?
        subgroup_npmi_fid = pjoin(pmi_cache_path, subgroup + "_npmi.csv")
        subgroup_pmi_fid = pjoin(pmi_cache_path, subgroup + "_pmi.csv")
        subgroup_cooc_fid = pjoin(pmi_cache_path, subgroup + "_vocab_cooc.csv")
        subgroup_files[subgroup] = (
            subgroup_npmi_fid,
            subgroup_pmi_fid,
            subgroup_cooc_fid,
        )
    return subgroup_files


## Input/Output ##


def intersect_dfs(df_dict):
    started = 0
    new_df = None
    for key, df in df_dict.items():
        if df is None:
            continue
        for key2, df2 in df_dict.items():
            if df2 is None:
                continue
            if key == key2:
                continue
            if started:
                new_df = new_df.join(df2, how="inner", lsuffix="1", rsuffix="2")
            else:
                new_df = df.join(df2, how="inner", lsuffix="1", rsuffix="2")
                started = 1
    return new_df.copy()


def write_df(df, df_fid):
    feather.write_feather(df, df_fid)


def write_json(json_dict, json_fid):
    with open(json_fid, "w", encoding="utf-8") as f:
        json.dump(json_dict, f)

def write_subgroup_npmi_data(subgroup, subgroup_dict, subgroup_files):
    """
    Saves the calculated nPMI statistics to their output files.
    Includes the npmi scores for each identity term, the pmi scores, and the
    co-occurrence counts of the identity term with all the other words
    :param subgroup: Identity term
    :return:
    """
    subgroup_fids = subgroup_files[subgroup]
    subgroup_npmi_fid, subgroup_pmi_fid, subgroup_cooc_fid = subgroup_fids
    subgroup_dfs = subgroup_dict[subgroup]
    subgroup_cooc_df, subgroup_pmi_df, subgroup_npmi_df = subgroup_dfs
    with open(subgroup_npmi_fid, "w+") as f:
        subgroup_npmi_df.to_csv(f)
    with open(subgroup_pmi_fid, "w+") as f:
        subgroup_pmi_df.to_csv(f)
    with open(subgroup_cooc_fid, "w+") as f:
        subgroup_cooc_df.to_csv(f)

def write_zipf_data(z, zipf_fid):
    zipf_dict = {}
    zipf_dict["xmin"] = int(z.xmin)
    zipf_dict["xmax"] = int(z.xmax)
    zipf_dict["alpha"] = float(z.alpha)
    zipf_dict["ks_distance"] = float(z.distance)
    zipf_dict["p-value"] = float(z.ks_test.pvalue)
    zipf_dict["uniq_counts"] = [int(count) for count in z.uniq_counts]
    zipf_dict["uniq_ranks"] = [int(rank) for rank in z.uniq_ranks]
    with open(zipf_fid, "w+", encoding="utf-8") as f:
        json.dump(zipf_dict, f)