Commit
•
00744e7
1
Parent(s):
fe693ae
Update vision and audio models
Browse files- app.py +24 -7
- requirements.txt +1 -1
app.py
CHANGED
@@ -11,6 +11,8 @@ from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
|
|
11 |
from transformers.models.auto.modeling_auto import (
|
12 |
MODEL_FOR_CTC_MAPPING_NAMES,
|
13 |
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
|
|
|
|
|
14 |
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
|
15 |
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
|
16 |
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES,
|
@@ -18,11 +20,23 @@ from transformers.models.auto.modeling_auto import (
|
|
18 |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
19 |
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
|
20 |
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
|
23 |
-
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) +
|
|
|
|
|
24 |
|
25 |
-
vision_models =
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
today = datetime.date.today()
|
28 |
year, week, _ = today.isocalendar()
|
@@ -30,6 +44,7 @@ year, week, _ = today.isocalendar()
|
|
30 |
DATASET_REPO_URL = (
|
31 |
"https://huggingface.co/datasets/huggingface/transformers-stats-space-data"
|
32 |
)
|
|
|
33 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
34 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
35 |
|
@@ -65,9 +80,12 @@ def retrieve_model_stats():
|
|
65 |
[m.downloads for m in models if hasattr(m, "downloads")]
|
66 |
)
|
67 |
if len(models) > 0:
|
68 |
-
model_stats["download_per_model"] =
|
69 |
-
model_stats["num_downloads"] / len(models)
|
70 |
)
|
|
|
|
|
|
|
71 |
total_downloads += model_stats["num_downloads"]
|
72 |
|
73 |
# save in overall dict
|
@@ -106,7 +124,6 @@ if not os.path.isfile(DATA_FILE):
|
|
106 |
with open(DATA_FILE, "r") as f:
|
107 |
dataframe = pd.read_csv(DATA_FILE)
|
108 |
|
109 |
-
dataframe[dataframe["modality"] == "audio"]
|
110 |
int_downloads = np.array(
|
111 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
112 |
)
|
@@ -198,7 +215,7 @@ st.title("All stats last 30 days")
|
|
198 |
st.table(dataframe)
|
199 |
|
200 |
st.title("Vision stats last 30 days")
|
201 |
-
st.table(dataframe[dataframe["modality"] == "vision"])
|
202 |
|
203 |
st.title("Audio stats last 30 days")
|
204 |
-
st.table(dataframe[dataframe["modality"] == "audio"])
|
|
|
11 |
from transformers.models.auto.modeling_auto import (
|
12 |
MODEL_FOR_CTC_MAPPING_NAMES,
|
13 |
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
|
14 |
+
MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES,
|
15 |
+
MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
|
16 |
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES,
|
17 |
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
|
18 |
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES,
|
|
|
20 |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
21 |
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
|
22 |
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
|
23 |
+
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
|
24 |
+
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES,
|
25 |
+
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
|
26 |
+
MODEL_FOR_BACKBONE_MAPPING_NAMES,
|
27 |
+
_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES,
|
28 |
)
|
29 |
|
30 |
+
audio_models = list(MODEL_FOR_CTC_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES.keys()) + \
|
31 |
+
list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES.keys()) + \
|
32 |
+
list(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES.keys())
|
33 |
|
34 |
+
vision_models = list(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES.keys()) + list(MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING_NAMES.keys()) + \
|
35 |
+
list(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES.keys()) + list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys()) + \
|
36 |
+
list(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES.keys()) + list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES.keys()) + \
|
37 |
+
list(MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.keys()) + list(MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES.keys()) + \
|
38 |
+
list(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES.keys()) + list(MODEL_FOR_BACKBONE_MAPPING_NAMES.keys()) + \
|
39 |
+
list(_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES.keys())
|
40 |
|
41 |
today = datetime.date.today()
|
42 |
year, week, _ = today.isocalendar()
|
|
|
44 |
DATASET_REPO_URL = (
|
45 |
"https://huggingface.co/datasets/huggingface/transformers-stats-space-data"
|
46 |
)
|
47 |
+
|
48 |
DATA_FILENAME = f"data_{week}_{year}.csv"
|
49 |
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
50 |
|
|
|
80 |
[m.downloads for m in models if hasattr(m, "downloads")]
|
81 |
)
|
82 |
if len(models) > 0:
|
83 |
+
model_stats["download_per_model"] = int(
|
84 |
+
model_stats["num_downloads"] / len(models)
|
85 |
)
|
86 |
+
else:
|
87 |
+
model_stats["download_per_model"] = model_stats["num_downloads"]
|
88 |
+
|
89 |
total_downloads += model_stats["num_downloads"]
|
90 |
|
91 |
# save in overall dict
|
|
|
124 |
with open(DATA_FILE, "r") as f:
|
125 |
dataframe = pd.read_csv(DATA_FILE)
|
126 |
|
|
|
127 |
int_downloads = np.array(
|
128 |
[int(x.replace(",", "")) for x in dataframe["num_downloads"].values]
|
129 |
)
|
|
|
215 |
st.table(dataframe)
|
216 |
|
217 |
st.title("Vision stats last 30 days")
|
218 |
+
st.table(dataframe[dataframe["modality"] == "vision"].drop("modality", axis=1))
|
219 |
|
220 |
st.title("Audio stats last 30 days")
|
221 |
+
st.table(dataframe[dataframe["modality"] == "audio"].drop("modality", axis=1))
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
transformers
|
2 |
huggingface_hub
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git
|
2 |
huggingface_hub
|