Spaces:
Sleeping
Sleeping
File size: 1,842 Bytes
0951697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
from PIL import Image
from tensorflow.keras.preprocessing import image
# Load the pre-trained ResNet50 model
model = tf.keras.applications.ResNet50(weights='imagenet', input_shape=(224, 224, 3))
# Function to preprocess the input image
def load_and_preprocess_image(img_path):
img = Image.open(img_path)
img = img.resize((224, 224)) # Resize the image to the size expected by the model
img_array = image.img_to_array(img) # Convert the image to a numpy array
img_array = np.expand_dims(img_array, axis=0) # Add a batch dimension (1, 224, 224, 3)
img_array = preprocess_input(img_array) # Preprocess the image (normalize)
return img_array
# Prediction function
def predict(image):
# Preprocess the image
image = load_and_preprocess_image(image)
# Get the model's raw prediction (logits)
logits = model.predict(image)
# Decode the predictions to human-readable labels
predicted_class = decode_predictions(logits, top=1)[0][0][1]
confidence = decode_predictions(logits, top=1)[0][0][2] * 100
if predicted_class != 'golden_retriever':
predicted_class = "FLAG{3993}"
return predicted_class, confidence
# Gradio interface
iface = gr.Interface(
fn=predict, # Function to call for prediction
inputs=gr.Image(type="filepath", label="Upload an image"), # Input: Image upload
outputs=gr.Textbox(label="Predicted Class"), # Output: Text showing predicted class
title="Vault Challenge 5 - PGD", # Title of the interface
description="Upload an image, and the model will predict the class. Try to fool the model into predicting the FLAG using PGD!"
)
# Launch the Gradio interface
iface.launch() |