Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import torchvision.transforms as transforms | |
# Colors for all 20 parts | |
part_colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 0, 85], [255, 0, 170], | |
[0, 255, 0], [85, 255, 0], [170, 255, 0], [0, 255, 85], [0, 255, 170], | |
[0, 0, 255], [85, 0, 255], [170, 0, 255], [0, 85, 255], [0, 170, 255], | |
[255, 255, 0], [255, 255, 85], [255, 255, 170], [255, 0, 255], [255, 85, 255], | |
[255, 170, 255], [0, 255, 255], [85, 255, 255], [170, 255, 255]] | |
colormap = np.array(part_colors, dtype=np.uint8) | |
def image_to_tensor(image): | |
return transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
])(image) | |
def decode_segmentation_masks(mask, n_classes=20): | |
red = np.zeros_like(mask).astype(np.uint8) | |
green = np.zeros_like(mask).astype(np.uint8) | |
blue = np.zeros_like(mask).astype(np.uint8) | |
for chanel in range(0, n_classes): | |
idx = mask == chanel | |
red[idx] = colormap[chanel, 0] | |
green[idx] = colormap[chanel, 1] | |
blue[idx] = colormap[chanel, 2] | |
return np.stack([red, green, blue], axis=2) | |
def vis_parsing_maps(image: np.array, parsing_anno, stride=1): | |
image = np.array(image) | |
vis_im = image.copy().astype(np.uint8) | |
vis_parsing_anno = parsing_anno.copy().astype(np.uint8) | |
vis_parsing_anno = cv2.resize(vis_parsing_anno, None, fx=stride, fy=stride, interpolation=cv2.INTER_NEAREST) | |
vis_parsing_anno_color = np.zeros((vis_parsing_anno.shape[0], vis_parsing_anno.shape[1], 3)) + 255 | |
num_of_class = np.max(vis_parsing_anno) | |
for pi in range(1, num_of_class + 1): | |
index = np.where(vis_parsing_anno == pi) | |
vis_parsing_anno_color[index[0], index[1], :] = part_colors[pi] | |
vis_parsing_anno_color = vis_parsing_anno_color.astype(np.uint8) | |
vis_im = cv2.addWeighted(cv2.cvtColor(vis_im, cv2.COLOR_RGB2BGR), 0.4, vis_parsing_anno_color, 0.6, 0) | |
return vis_parsing_anno, vis_im | |