File size: 6,817 Bytes
473b850
 
 
 
 
 
 
 
 
 
b554f48
473b850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b44d4b1
 
 
 
 
 
 
 
 
473b850
b44d4b1
 
473b850
b554f48
ef87020
 
8d8da79
ef87020
 
d854a7c
d48f26a
 
473b850
b554f48
 
 
 
b44d4b1
 
 
ffcdb43
b44d4b1
473b850
 
 
 
 
b44d4b1
 
 
473b850
b44d4b1
 
 
473b850
b44d4b1
 
 
473b850
b44d4b1
 
 
473b850
 
b44d4b1
 
 
473b850
 
b44d4b1
 
473b850
b44d4b1
 
 
473b850
b44d4b1
 
 
473b850
b44d4b1
 
 
473b850
b44d4b1
 
 
473b850
ef87020
 
b44d4b1
 
 
 
 
 
 
 
 
 
 
 
 
 
5935f44
 
b44d4b1
 
 
 
 
 
 
 
 
 
 
ef87020
b44d4b1
ef87020
 
b554f48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python

from __future__ import annotations

import os
import pathlib
import shlex
import subprocess

import gradio as gr
import torch

if os.getenv('SYSTEM') == 'spaces':
    with open('patch') as f:
        subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet')

base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/'
names = [
    'body_pose_model.pth',
    'dpt_hybrid-midas-501f0c75.pt',
    'hand_pose_model.pth',
    'mlsd_large_512_fp32.pth',
    'mlsd_tiny_512_fp32.pth',
    'network-bsds500.pth',
    'upernet_global_small.pth',
]
for name in names:
    command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}'
    out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}')
    if out_path.exists():
        continue
    subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')

from app_canny import create_demo as create_demo_canny
from app_depth import create_demo as create_demo_depth
from app_fake_scribble import create_demo as create_demo_fake_scribble
from app_hed import create_demo as create_demo_hed
from app_hough import create_demo as create_demo_hough
from app_normal import create_demo as create_demo_normal
from app_pose import create_demo as create_demo_pose
from app_scribble import create_demo as create_demo_scribble
from app_scribble_interactive import \
    create_demo as create_demo_scribble_interactive
from app_seg import create_demo as create_demo_seg
from model import Model, download_all_controlnet_weights

DESCRIPTION = '# [ControlNet v1.0](https://github.com/lllyasviel/ControlNet) + [Anything-v4.0](https://huggingface.co/andite/anything-v4.0)'

SPACE_ID = os.getenv('SPACE_ID')
ALLOW_CHANGING_BASE_MODEL = SPACE_ID != 'hysts/ControlNet-with-Anything-v4'

if SPACE_ID is not None:
    DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
if not torch.cuda.is_available():
    DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'

if torch.cuda.is_available():
    if os.getenv('SYSTEM') == 'spaces':
        download_all_controlnet_weights()

MAX_IMAGES = int(os.getenv('MAX_IMAGES', '3'))
DEFAULT_NUM_IMAGES = min(MAX_IMAGES, int(os.getenv('DEFAULT_NUM_IMAGES', '1')))

DEFAULT_MODEL_ID = os.getenv('DEFAULT_MODEL_ID', 'andite/anything-v4.0')
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name='canny')

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Tabs():
        with gr.TabItem('Canny'):
            create_demo_canny(model.process_canny,
                              max_images=MAX_IMAGES,
                              default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Hough'):
            create_demo_hough(model.process_hough,
                              max_images=MAX_IMAGES,
                              default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('HED'):
            create_demo_hed(model.process_hed,
                            max_images=MAX_IMAGES,
                            default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Scribble'):
            create_demo_scribble(model.process_scribble,
                                 max_images=MAX_IMAGES,
                                 default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Scribble Interactive'):
            create_demo_scribble_interactive(
                model.process_scribble_interactive,
                max_images=MAX_IMAGES,
                default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Fake Scribble'):
            create_demo_fake_scribble(model.process_fake_scribble,
                                      max_images=MAX_IMAGES,
                                      default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Pose'):
            create_demo_pose(model.process_pose,
                             max_images=MAX_IMAGES,
                             default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Segmentation'):
            create_demo_seg(model.process_seg,
                            max_images=MAX_IMAGES,
                            default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Depth'):
            create_demo_depth(model.process_depth,
                              max_images=MAX_IMAGES,
                              default_num_images=DEFAULT_NUM_IMAGES)
        with gr.TabItem('Normal map'):
            create_demo_normal(model.process_normal,
                               max_images=MAX_IMAGES,
                               default_num_images=DEFAULT_NUM_IMAGES)

    with gr.Accordion(label='Base model', open=False):
        with gr.Row():
            with gr.Column():
                current_base_model = gr.Text(label='Current base model')
            with gr.Column(scale=0.3):
                check_base_model_button = gr.Button('Check current base model')
        with gr.Row():
            with gr.Column():
                new_base_model_id = gr.Text(
                    label='New base model',
                    max_lines=1,
                    placeholder='runwayml/stable-diffusion-v1-5',
                    info=
                    'The base model must be compatible with Stable Diffusion v1.5.',
                    interactive=ALLOW_CHANGING_BASE_MODEL)
            with gr.Column(scale=0.3):
                change_base_model_button = gr.Button(
                    'Change base model', interactive=ALLOW_CHANGING_BASE_MODEL)
        if not ALLOW_CHANGING_BASE_MODEL:
            gr.Markdown(
                '''The base model is not allowed to be changed in this Space so as not to slow down the demo, but it can be changed if you duplicate the Space. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>'''
            )

    check_base_model_button.click(fn=lambda: model.base_model_id,
                                  outputs=current_base_model,
                                  queue=False)
    new_base_model_id.submit(fn=model.set_base_model,
                             inputs=new_base_model_id,
                             outputs=current_base_model)
    change_base_model_button.click(fn=model.set_base_model,
                                   inputs=new_base_model_id,
                                   outputs=current_base_model)

demo.queue(api_open=False, max_size=10).launch()