Spaces:
Running
Running
File size: 4,724 Bytes
96b3fb1 edeb7d0 96b3fb1 edeb7d0 96b3fb1 8052d81 96b3fb1 98f4347 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 4354ec3 18ce2cc 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 18ce2cc 96b3fb1 76c6759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import shlex
import subprocess
import gradio as gr
if os.getenv('SYSTEM') == 'spaces':
with open('patch') as f:
subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet')
base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/'
names = [
'body_pose_model.pth',
'dpt_hybrid-midas-501f0c75.pt',
'hand_pose_model.pth',
'mlsd_large_512_fp32.pth',
'mlsd_tiny_512_fp32.pth',
'network-bsds500.pth',
'upernet_global_small.pth',
]
for name in names:
command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}'
out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}')
if out_path.exists():
continue
subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')
from gradio_canny2image import create_demo as create_demo_canny
from gradio_depth2image import create_demo as create_demo_depth
from gradio_fake_scribble2image import create_demo as create_demo_fake_scribble
from gradio_hed2image import create_demo as create_demo_hed
from gradio_hough2image import create_demo as create_demo_hough
from gradio_normal2image import create_demo as create_demo_normal
from gradio_pose2image import create_demo as create_demo_pose
from gradio_scribble2image import create_demo as create_demo_scribble
from gradio_scribble2image_interactive import \
create_demo as create_demo_scribble_interactive
from gradio_seg2image import create_demo as create_demo_seg
from model import Model
DESCRIPTION = '''# ControlNet
This is an unofficial demo for [https://github.com/lllyasviel/ControlNet](https://github.com/lllyasviel/ControlNet).
If you are interested in trying out other base models, check out [this Space](https://huggingface.co/spaces/hysts/ControlNet-with-other-models) as well.
'''
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
DESCRIPTION += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<br/>
<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>
'''
MAX_IMAGES = int(os.getenv('MAX_IMAGES', '3'))
DEFAULT_NUM_IMAGES = min(MAX_IMAGES, int(os.getenv('DEFAULT_NUM_IMAGES', '1')))
model = Model()
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem('Canny'):
create_demo_canny(model.process_canny,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Hough'):
create_demo_hough(model.process_hough,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('HED'):
create_demo_hed(model.process_hed,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Scribble'):
create_demo_scribble(model.process_scribble,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Scribble Interactive'):
create_demo_scribble_interactive(
model.process_scribble_interactive,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Fake Scribble'):
create_demo_fake_scribble(model.process_fake_scribble,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Pose'):
create_demo_pose(model.process_pose,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Segmentation'):
create_demo_seg(model.process_seg,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Depth'):
create_demo_depth(model.process_depth,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
with gr.TabItem('Normal map'):
create_demo_normal(model.process_normal,
max_images=MAX_IMAGES,
default_num_images=DEFAULT_NUM_IMAGES)
demo.queue(api_open=False).launch()
|