Spaces:
Running
Running
Update
Browse files- app_normal.py +3 -0
- app_seg.py +3 -0
- model.py +28 -16
app_normal.py
CHANGED
@@ -13,6 +13,8 @@ def create_demo(process, max_images=12, default_num_images=3):
|
|
13 |
prompt = gr.Textbox(label='Prompt')
|
14 |
run_button = gr.Button(label='Run')
|
15 |
with gr.Accordion('Advanced options', open=False):
|
|
|
|
|
16 |
num_samples = gr.Slider(label='Images',
|
17 |
minimum=1,
|
18 |
maximum=max_images,
|
@@ -74,6 +76,7 @@ def create_demo(process, max_images=12, default_num_images=3):
|
|
74 |
guidance_scale,
|
75 |
seed,
|
76 |
bg_threshold,
|
|
|
77 |
]
|
78 |
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
79 |
run_button.click(fn=process,
|
|
|
13 |
prompt = gr.Textbox(label='Prompt')
|
14 |
run_button = gr.Button(label='Run')
|
15 |
with gr.Accordion('Advanced options', open=False):
|
16 |
+
is_normal_image = gr.Checkbox(label='Is normal image',
|
17 |
+
value=False)
|
18 |
num_samples = gr.Slider(label='Images',
|
19 |
minimum=1,
|
20 |
maximum=max_images,
|
|
|
76 |
guidance_scale,
|
77 |
seed,
|
78 |
bg_threshold,
|
79 |
+
is_normal_image,
|
80 |
]
|
81 |
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
82 |
run_button.click(fn=process,
|
app_seg.py
CHANGED
@@ -13,6 +13,8 @@ def create_demo(process, max_images=12, default_num_images=3):
|
|
13 |
prompt = gr.Textbox(label='Prompt')
|
14 |
run_button = gr.Button(label='Run')
|
15 |
with gr.Accordion('Advanced options', open=False):
|
|
|
|
|
16 |
num_samples = gr.Slider(label='Images',
|
17 |
minimum=1,
|
18 |
maximum=max_images,
|
@@ -68,6 +70,7 @@ def create_demo(process, max_images=12, default_num_images=3):
|
|
68 |
num_steps,
|
69 |
guidance_scale,
|
70 |
seed,
|
|
|
71 |
]
|
72 |
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
73 |
run_button.click(fn=process,
|
|
|
13 |
prompt = gr.Textbox(label='Prompt')
|
14 |
run_button = gr.Button(label='Run')
|
15 |
with gr.Accordion('Advanced options', open=False):
|
16 |
+
is_segmentation_map = gr.Checkbox(
|
17 |
+
label='Is segmentation map', value=False)
|
18 |
num_samples = gr.Slider(label='Images',
|
19 |
minimum=1,
|
20 |
maximum=max_images,
|
|
|
70 |
num_steps,
|
71 |
guidance_scale,
|
72 |
seed,
|
73 |
+
is_segmentation_map,
|
74 |
]
|
75 |
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
76 |
run_button.click(fn=process,
|
model.py
CHANGED
@@ -494,14 +494,18 @@ class Model:
|
|
494 |
input_image: np.ndarray,
|
495 |
image_resolution: int,
|
496 |
detect_resolution: int,
|
|
|
497 |
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
498 |
input_image = HWC3(input_image)
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
|
|
|
|
|
|
505 |
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
506 |
control_image)
|
507 |
|
@@ -518,11 +522,13 @@ class Model:
|
|
518 |
num_steps: int,
|
519 |
guidance_scale: float,
|
520 |
seed: int,
|
|
|
521 |
) -> list[PIL.Image.Image]:
|
522 |
control_image, vis_control_image = self.preprocess_seg(
|
523 |
input_image=input_image,
|
524 |
image_resolution=image_resolution,
|
525 |
detect_resolution=detect_resolution,
|
|
|
526 |
)
|
527 |
return self.process(
|
528 |
task_name='seg',
|
@@ -597,17 +603,21 @@ class Model:
|
|
597 |
input_image: np.ndarray,
|
598 |
image_resolution: int,
|
599 |
detect_resolution: int,
|
600 |
-
bg_threshold,
|
|
|
601 |
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
602 |
input_image = HWC3(input_image)
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
|
|
|
|
|
|
611 |
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
612 |
control_image)
|
613 |
|
@@ -624,13 +634,15 @@ class Model:
|
|
624 |
num_steps: int,
|
625 |
guidance_scale: float,
|
626 |
seed: int,
|
627 |
-
bg_threshold,
|
|
|
628 |
) -> list[PIL.Image.Image]:
|
629 |
control_image, vis_control_image = self.preprocess_normal(
|
630 |
input_image=input_image,
|
631 |
image_resolution=image_resolution,
|
632 |
detect_resolution=detect_resolution,
|
633 |
bg_threshold=bg_threshold,
|
|
|
634 |
)
|
635 |
return self.process(
|
636 |
task_name='normal',
|
|
|
494 |
input_image: np.ndarray,
|
495 |
image_resolution: int,
|
496 |
detect_resolution: int,
|
497 |
+
is_segmentation_map: bool,
|
498 |
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
499 |
input_image = HWC3(input_image)
|
500 |
+
if not is_segmentation_map:
|
501 |
+
control_image = apply_uniformer(
|
502 |
+
resize_image(input_image, detect_resolution))
|
503 |
+
image = resize_image(input_image, image_resolution)
|
504 |
+
H, W = image.shape[:2]
|
505 |
+
control_image = cv2.resize(control_image, (W, H),
|
506 |
+
interpolation=cv2.INTER_NEAREST)
|
507 |
+
else:
|
508 |
+
control_image = input_image
|
509 |
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
510 |
control_image)
|
511 |
|
|
|
522 |
num_steps: int,
|
523 |
guidance_scale: float,
|
524 |
seed: int,
|
525 |
+
is_segmentation_map: bool,
|
526 |
) -> list[PIL.Image.Image]:
|
527 |
control_image, vis_control_image = self.preprocess_seg(
|
528 |
input_image=input_image,
|
529 |
image_resolution=image_resolution,
|
530 |
detect_resolution=detect_resolution,
|
531 |
+
is_segmentation_map=is_segmentation_map,
|
532 |
)
|
533 |
return self.process(
|
534 |
task_name='seg',
|
|
|
603 |
input_image: np.ndarray,
|
604 |
image_resolution: int,
|
605 |
detect_resolution: int,
|
606 |
+
bg_threshold: float,
|
607 |
+
is_normal_image: bool,
|
608 |
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
609 |
input_image = HWC3(input_image)
|
610 |
+
if not is_normal_image:
|
611 |
+
_, control_image = apply_midas(resize_image(
|
612 |
+
input_image, detect_resolution),
|
613 |
+
bg_th=bg_threshold)
|
614 |
+
control_image = HWC3(control_image)
|
615 |
+
image = resize_image(input_image, image_resolution)
|
616 |
+
H, W = image.shape[:2]
|
617 |
+
control_image = cv2.resize(control_image, (W, H),
|
618 |
+
interpolation=cv2.INTER_LINEAR)
|
619 |
+
else:
|
620 |
+
control_image = input_image
|
621 |
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
622 |
control_image)
|
623 |
|
|
|
634 |
num_steps: int,
|
635 |
guidance_scale: float,
|
636 |
seed: int,
|
637 |
+
bg_threshold: float,
|
638 |
+
is_normal_image: bool,
|
639 |
) -> list[PIL.Image.Image]:
|
640 |
control_image, vis_control_image = self.preprocess_normal(
|
641 |
input_image=input_image,
|
642 |
image_resolution=image_resolution,
|
643 |
detect_resolution=detect_resolution,
|
644 |
bg_threshold=bg_threshold,
|
645 |
+
is_normal_image=is_normal_image,
|
646 |
)
|
647 |
return self.process(
|
648 |
task_name='normal',
|