Spaces:
Running
Running
Clean up
Browse files
model.py
CHANGED
@@ -111,31 +111,6 @@ class Model:
|
|
111 |
generator=generator,
|
112 |
image=control_image).images
|
113 |
|
114 |
-
def process(
|
115 |
-
self,
|
116 |
-
task_name: str,
|
117 |
-
prompt: str,
|
118 |
-
additional_prompt: str,
|
119 |
-
negative_prompt: str,
|
120 |
-
control_image: PIL.Image.Image,
|
121 |
-
vis_control_image: PIL.Image.Image,
|
122 |
-
num_samples: int,
|
123 |
-
num_steps: int,
|
124 |
-
guidance_scale: float,
|
125 |
-
seed: int,
|
126 |
-
) -> list[PIL.Image.Image]:
|
127 |
-
self.load_controlnet_weight(task_name)
|
128 |
-
results = self.run_pipe(
|
129 |
-
prompt=self.get_prompt(prompt, additional_prompt),
|
130 |
-
negative_prompt=negative_prompt,
|
131 |
-
control_image=control_image,
|
132 |
-
num_images=num_samples,
|
133 |
-
num_steps=num_steps,
|
134 |
-
guidance_scale=guidance_scale,
|
135 |
-
seed=seed,
|
136 |
-
)
|
137 |
-
return [vis_control_image] + results
|
138 |
-
|
139 |
@staticmethod
|
140 |
def preprocess_canny(
|
141 |
input_image: np.ndarray,
|
@@ -157,7 +132,7 @@ class Model:
|
|
157 |
prompt: str,
|
158 |
additional_prompt: str,
|
159 |
negative_prompt: str,
|
160 |
-
|
161 |
image_resolution: int,
|
162 |
num_steps: int,
|
163 |
guidance_scale: float,
|
@@ -171,18 +146,17 @@ class Model:
|
|
171 |
low_threshold=low_threshold,
|
172 |
high_threshold=high_threshold,
|
173 |
)
|
174 |
-
|
175 |
-
|
176 |
-
prompt=prompt,
|
177 |
-
additional_prompt=additional_prompt,
|
178 |
negative_prompt=negative_prompt,
|
179 |
control_image=control_image,
|
180 |
-
|
181 |
-
num_samples=num_samples,
|
182 |
num_steps=num_steps,
|
183 |
guidance_scale=guidance_scale,
|
184 |
seed=seed,
|
185 |
)
|
|
|
186 |
|
187 |
@staticmethod
|
188 |
def preprocess_hough(
|
@@ -215,7 +189,7 @@ class Model:
|
|
215 |
prompt: str,
|
216 |
additional_prompt: str,
|
217 |
negative_prompt: str,
|
218 |
-
|
219 |
image_resolution: int,
|
220 |
detect_resolution: int,
|
221 |
num_steps: int,
|
@@ -231,18 +205,17 @@ class Model:
|
|
231 |
value_threshold=value_threshold,
|
232 |
distance_threshold=distance_threshold,
|
233 |
)
|
234 |
-
|
235 |
-
|
236 |
-
prompt=prompt,
|
237 |
-
additional_prompt=additional_prompt,
|
238 |
negative_prompt=negative_prompt,
|
239 |
control_image=control_image,
|
240 |
-
|
241 |
-
num_samples=num_samples,
|
242 |
num_steps=num_steps,
|
243 |
guidance_scale=guidance_scale,
|
244 |
seed=seed,
|
245 |
)
|
|
|
246 |
|
247 |
@staticmethod
|
248 |
def preprocess_hed(
|
@@ -267,7 +240,7 @@ class Model:
|
|
267 |
prompt: str,
|
268 |
additional_prompt: str,
|
269 |
negative_prompt: str,
|
270 |
-
|
271 |
image_resolution: int,
|
272 |
detect_resolution: int,
|
273 |
num_steps: int,
|
@@ -279,18 +252,17 @@ class Model:
|
|
279 |
image_resolution=image_resolution,
|
280 |
detect_resolution=detect_resolution,
|
281 |
)
|
282 |
-
|
283 |
-
|
284 |
-
prompt=prompt,
|
285 |
-
additional_prompt=additional_prompt,
|
286 |
negative_prompt=negative_prompt,
|
287 |
control_image=control_image,
|
288 |
-
|
289 |
-
num_samples=num_samples,
|
290 |
num_steps=num_steps,
|
291 |
guidance_scale=guidance_scale,
|
292 |
seed=seed,
|
293 |
)
|
|
|
294 |
|
295 |
@staticmethod
|
296 |
def preprocess_scribble(
|
@@ -311,7 +283,7 @@ class Model:
|
|
311 |
prompt: str,
|
312 |
additional_prompt: str,
|
313 |
negative_prompt: str,
|
314 |
-
|
315 |
image_resolution: int,
|
316 |
num_steps: int,
|
317 |
guidance_scale: float,
|
@@ -321,18 +293,17 @@ class Model:
|
|
321 |
input_image=input_image,
|
322 |
image_resolution=image_resolution,
|
323 |
)
|
324 |
-
|
325 |
-
|
326 |
-
prompt=prompt,
|
327 |
-
additional_prompt=additional_prompt,
|
328 |
negative_prompt=negative_prompt,
|
329 |
control_image=control_image,
|
330 |
-
|
331 |
-
num_samples=num_samples,
|
332 |
num_steps=num_steps,
|
333 |
guidance_scale=guidance_scale,
|
334 |
seed=seed,
|
335 |
)
|
|
|
336 |
|
337 |
@staticmethod
|
338 |
def preprocess_scribble_interactive(
|
@@ -354,7 +325,7 @@ class Model:
|
|
354 |
prompt: str,
|
355 |
additional_prompt: str,
|
356 |
negative_prompt: str,
|
357 |
-
|
358 |
image_resolution: int,
|
359 |
num_steps: int,
|
360 |
guidance_scale: float,
|
@@ -364,18 +335,17 @@ class Model:
|
|
364 |
input_image=input_image,
|
365 |
image_resolution=image_resolution,
|
366 |
)
|
367 |
-
|
368 |
-
|
369 |
-
prompt=prompt,
|
370 |
-
additional_prompt=additional_prompt,
|
371 |
negative_prompt=negative_prompt,
|
372 |
control_image=control_image,
|
373 |
-
|
374 |
-
num_samples=num_samples,
|
375 |
num_steps=num_steps,
|
376 |
guidance_scale=guidance_scale,
|
377 |
seed=seed,
|
378 |
)
|
|
|
379 |
|
380 |
@staticmethod
|
381 |
def preprocess_fake_scribble(
|
@@ -408,7 +378,7 @@ class Model:
|
|
408 |
prompt: str,
|
409 |
additional_prompt: str,
|
410 |
negative_prompt: str,
|
411 |
-
|
412 |
image_resolution: int,
|
413 |
detect_resolution: int,
|
414 |
num_steps: int,
|
@@ -420,18 +390,17 @@ class Model:
|
|
420 |
image_resolution=image_resolution,
|
421 |
detect_resolution=detect_resolution,
|
422 |
)
|
423 |
-
|
424 |
-
|
425 |
-
prompt=prompt,
|
426 |
-
additional_prompt=additional_prompt,
|
427 |
negative_prompt=negative_prompt,
|
428 |
control_image=control_image,
|
429 |
-
|
430 |
-
num_samples=num_samples,
|
431 |
num_steps=num_steps,
|
432 |
guidance_scale=guidance_scale,
|
433 |
seed=seed,
|
434 |
)
|
|
|
435 |
|
436 |
@staticmethod
|
437 |
def preprocess_pose(
|
@@ -462,7 +431,7 @@ class Model:
|
|
462 |
prompt: str,
|
463 |
additional_prompt: str,
|
464 |
negative_prompt: str,
|
465 |
-
|
466 |
image_resolution: int,
|
467 |
detect_resolution: int,
|
468 |
num_steps: int,
|
@@ -476,18 +445,17 @@ class Model:
|
|
476 |
detect_resolution=detect_resolution,
|
477 |
is_pose_image=is_pose_image,
|
478 |
)
|
479 |
-
|
480 |
-
|
481 |
-
prompt=prompt,
|
482 |
-
additional_prompt=additional_prompt,
|
483 |
negative_prompt=negative_prompt,
|
484 |
control_image=control_image,
|
485 |
-
|
486 |
-
num_samples=num_samples,
|
487 |
num_steps=num_steps,
|
488 |
guidance_scale=guidance_scale,
|
489 |
seed=seed,
|
490 |
)
|
|
|
491 |
|
492 |
@staticmethod
|
493 |
def preprocess_seg(
|
@@ -516,7 +484,7 @@ class Model:
|
|
516 |
prompt: str,
|
517 |
additional_prompt: str,
|
518 |
negative_prompt: str,
|
519 |
-
|
520 |
image_resolution: int,
|
521 |
detect_resolution: int,
|
522 |
num_steps: int,
|
@@ -530,18 +498,17 @@ class Model:
|
|
530 |
detect_resolution=detect_resolution,
|
531 |
is_segmentation_map=is_segmentation_map,
|
532 |
)
|
533 |
-
|
534 |
-
|
535 |
-
prompt=prompt,
|
536 |
-
additional_prompt=additional_prompt,
|
537 |
negative_prompt=negative_prompt,
|
538 |
control_image=control_image,
|
539 |
-
|
540 |
-
num_samples=num_samples,
|
541 |
num_steps=num_steps,
|
542 |
guidance_scale=guidance_scale,
|
543 |
seed=seed,
|
544 |
)
|
|
|
545 |
|
546 |
@staticmethod
|
547 |
def preprocess_depth(
|
@@ -571,7 +538,7 @@ class Model:
|
|
571 |
prompt: str,
|
572 |
additional_prompt: str,
|
573 |
negative_prompt: str,
|
574 |
-
|
575 |
image_resolution: int,
|
576 |
detect_resolution: int,
|
577 |
num_steps: int,
|
@@ -585,18 +552,17 @@ class Model:
|
|
585 |
detect_resolution=detect_resolution,
|
586 |
is_depth_image=is_depth_image,
|
587 |
)
|
588 |
-
|
589 |
-
|
590 |
-
prompt=prompt,
|
591 |
-
additional_prompt=additional_prompt,
|
592 |
negative_prompt=negative_prompt,
|
593 |
control_image=control_image,
|
594 |
-
|
595 |
-
num_samples=num_samples,
|
596 |
num_steps=num_steps,
|
597 |
guidance_scale=guidance_scale,
|
598 |
seed=seed,
|
599 |
)
|
|
|
600 |
|
601 |
@staticmethod
|
602 |
def preprocess_normal(
|
@@ -628,7 +594,7 @@ class Model:
|
|
628 |
prompt: str,
|
629 |
additional_prompt: str,
|
630 |
negative_prompt: str,
|
631 |
-
|
632 |
image_resolution: int,
|
633 |
detect_resolution: int,
|
634 |
num_steps: int,
|
@@ -644,15 +610,14 @@ class Model:
|
|
644 |
bg_threshold=bg_threshold,
|
645 |
is_normal_image=is_normal_image,
|
646 |
)
|
647 |
-
|
648 |
-
|
649 |
-
prompt=prompt,
|
650 |
-
additional_prompt=additional_prompt,
|
651 |
negative_prompt=negative_prompt,
|
652 |
control_image=control_image,
|
653 |
-
|
654 |
-
num_samples=num_samples,
|
655 |
num_steps=num_steps,
|
656 |
guidance_scale=guidance_scale,
|
657 |
seed=seed,
|
658 |
)
|
|
|
|
111 |
generator=generator,
|
112 |
image=control_image).images
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
@staticmethod
|
115 |
def preprocess_canny(
|
116 |
input_image: np.ndarray,
|
|
|
132 |
prompt: str,
|
133 |
additional_prompt: str,
|
134 |
negative_prompt: str,
|
135 |
+
num_images: int,
|
136 |
image_resolution: int,
|
137 |
num_steps: int,
|
138 |
guidance_scale: float,
|
|
|
146 |
low_threshold=low_threshold,
|
147 |
high_threshold=high_threshold,
|
148 |
)
|
149 |
+
self.load_controlnet_weight('canny')
|
150 |
+
results = self.run_pipe(
|
151 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
152 |
negative_prompt=negative_prompt,
|
153 |
control_image=control_image,
|
154 |
+
num_images=num_images,
|
|
|
155 |
num_steps=num_steps,
|
156 |
guidance_scale=guidance_scale,
|
157 |
seed=seed,
|
158 |
)
|
159 |
+
return [vis_control_image] + results
|
160 |
|
161 |
@staticmethod
|
162 |
def preprocess_hough(
|
|
|
189 |
prompt: str,
|
190 |
additional_prompt: str,
|
191 |
negative_prompt: str,
|
192 |
+
num_images: int,
|
193 |
image_resolution: int,
|
194 |
detect_resolution: int,
|
195 |
num_steps: int,
|
|
|
205 |
value_threshold=value_threshold,
|
206 |
distance_threshold=distance_threshold,
|
207 |
)
|
208 |
+
self.load_controlnet_weight('hough')
|
209 |
+
results = self.run_pipe(
|
210 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
211 |
negative_prompt=negative_prompt,
|
212 |
control_image=control_image,
|
213 |
+
num_images=num_images,
|
|
|
214 |
num_steps=num_steps,
|
215 |
guidance_scale=guidance_scale,
|
216 |
seed=seed,
|
217 |
)
|
218 |
+
return [vis_control_image] + results
|
219 |
|
220 |
@staticmethod
|
221 |
def preprocess_hed(
|
|
|
240 |
prompt: str,
|
241 |
additional_prompt: str,
|
242 |
negative_prompt: str,
|
243 |
+
num_images: int,
|
244 |
image_resolution: int,
|
245 |
detect_resolution: int,
|
246 |
num_steps: int,
|
|
|
252 |
image_resolution=image_resolution,
|
253 |
detect_resolution=detect_resolution,
|
254 |
)
|
255 |
+
self.load_controlnet_weight('hed')
|
256 |
+
results = self.run_pipe(
|
257 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
258 |
negative_prompt=negative_prompt,
|
259 |
control_image=control_image,
|
260 |
+
num_images=num_images,
|
|
|
261 |
num_steps=num_steps,
|
262 |
guidance_scale=guidance_scale,
|
263 |
seed=seed,
|
264 |
)
|
265 |
+
return [vis_control_image] + results
|
266 |
|
267 |
@staticmethod
|
268 |
def preprocess_scribble(
|
|
|
283 |
prompt: str,
|
284 |
additional_prompt: str,
|
285 |
negative_prompt: str,
|
286 |
+
num_images: int,
|
287 |
image_resolution: int,
|
288 |
num_steps: int,
|
289 |
guidance_scale: float,
|
|
|
293 |
input_image=input_image,
|
294 |
image_resolution=image_resolution,
|
295 |
)
|
296 |
+
self.load_controlnet_weight('scribble')
|
297 |
+
results = self.run_pipe(
|
298 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
299 |
negative_prompt=negative_prompt,
|
300 |
control_image=control_image,
|
301 |
+
num_images=num_images,
|
|
|
302 |
num_steps=num_steps,
|
303 |
guidance_scale=guidance_scale,
|
304 |
seed=seed,
|
305 |
)
|
306 |
+
return [vis_control_image] + results
|
307 |
|
308 |
@staticmethod
|
309 |
def preprocess_scribble_interactive(
|
|
|
325 |
prompt: str,
|
326 |
additional_prompt: str,
|
327 |
negative_prompt: str,
|
328 |
+
num_images: int,
|
329 |
image_resolution: int,
|
330 |
num_steps: int,
|
331 |
guidance_scale: float,
|
|
|
335 |
input_image=input_image,
|
336 |
image_resolution=image_resolution,
|
337 |
)
|
338 |
+
self.load_controlnet_weight('scribble')
|
339 |
+
results = self.run_pipe(
|
340 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
341 |
negative_prompt=negative_prompt,
|
342 |
control_image=control_image,
|
343 |
+
num_images=num_images,
|
|
|
344 |
num_steps=num_steps,
|
345 |
guidance_scale=guidance_scale,
|
346 |
seed=seed,
|
347 |
)
|
348 |
+
return [vis_control_image] + results
|
349 |
|
350 |
@staticmethod
|
351 |
def preprocess_fake_scribble(
|
|
|
378 |
prompt: str,
|
379 |
additional_prompt: str,
|
380 |
negative_prompt: str,
|
381 |
+
num_images: int,
|
382 |
image_resolution: int,
|
383 |
detect_resolution: int,
|
384 |
num_steps: int,
|
|
|
390 |
image_resolution=image_resolution,
|
391 |
detect_resolution=detect_resolution,
|
392 |
)
|
393 |
+
self.load_controlnet_weight('scribble')
|
394 |
+
results = self.run_pipe(
|
395 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
396 |
negative_prompt=negative_prompt,
|
397 |
control_image=control_image,
|
398 |
+
num_images=num_images,
|
|
|
399 |
num_steps=num_steps,
|
400 |
guidance_scale=guidance_scale,
|
401 |
seed=seed,
|
402 |
)
|
403 |
+
return [vis_control_image] + results
|
404 |
|
405 |
@staticmethod
|
406 |
def preprocess_pose(
|
|
|
431 |
prompt: str,
|
432 |
additional_prompt: str,
|
433 |
negative_prompt: str,
|
434 |
+
num_images: int,
|
435 |
image_resolution: int,
|
436 |
detect_resolution: int,
|
437 |
num_steps: int,
|
|
|
445 |
detect_resolution=detect_resolution,
|
446 |
is_pose_image=is_pose_image,
|
447 |
)
|
448 |
+
self.load_controlnet_weight('pose')
|
449 |
+
results = self.run_pipe(
|
450 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
451 |
negative_prompt=negative_prompt,
|
452 |
control_image=control_image,
|
453 |
+
num_images=num_images,
|
|
|
454 |
num_steps=num_steps,
|
455 |
guidance_scale=guidance_scale,
|
456 |
seed=seed,
|
457 |
)
|
458 |
+
return [vis_control_image] + results
|
459 |
|
460 |
@staticmethod
|
461 |
def preprocess_seg(
|
|
|
484 |
prompt: str,
|
485 |
additional_prompt: str,
|
486 |
negative_prompt: str,
|
487 |
+
num_images: int,
|
488 |
image_resolution: int,
|
489 |
detect_resolution: int,
|
490 |
num_steps: int,
|
|
|
498 |
detect_resolution=detect_resolution,
|
499 |
is_segmentation_map=is_segmentation_map,
|
500 |
)
|
501 |
+
self.load_controlnet_weight('seg')
|
502 |
+
results = self.run_pipe(
|
503 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
504 |
negative_prompt=negative_prompt,
|
505 |
control_image=control_image,
|
506 |
+
num_images=num_images,
|
|
|
507 |
num_steps=num_steps,
|
508 |
guidance_scale=guidance_scale,
|
509 |
seed=seed,
|
510 |
)
|
511 |
+
return [vis_control_image] + results
|
512 |
|
513 |
@staticmethod
|
514 |
def preprocess_depth(
|
|
|
538 |
prompt: str,
|
539 |
additional_prompt: str,
|
540 |
negative_prompt: str,
|
541 |
+
num_images: int,
|
542 |
image_resolution: int,
|
543 |
detect_resolution: int,
|
544 |
num_steps: int,
|
|
|
552 |
detect_resolution=detect_resolution,
|
553 |
is_depth_image=is_depth_image,
|
554 |
)
|
555 |
+
self.load_controlnet_weight('depth')
|
556 |
+
results = self.run_pipe(
|
557 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
558 |
negative_prompt=negative_prompt,
|
559 |
control_image=control_image,
|
560 |
+
num_images=num_images,
|
|
|
561 |
num_steps=num_steps,
|
562 |
guidance_scale=guidance_scale,
|
563 |
seed=seed,
|
564 |
)
|
565 |
+
return [vis_control_image] + results
|
566 |
|
567 |
@staticmethod
|
568 |
def preprocess_normal(
|
|
|
594 |
prompt: str,
|
595 |
additional_prompt: str,
|
596 |
negative_prompt: str,
|
597 |
+
num_images: int,
|
598 |
image_resolution: int,
|
599 |
detect_resolution: int,
|
600 |
num_steps: int,
|
|
|
610 |
bg_threshold=bg_threshold,
|
611 |
is_normal_image=is_normal_image,
|
612 |
)
|
613 |
+
self.load_controlnet_weight('normal')
|
614 |
+
results = self.run_pipe(
|
615 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
|
|
616 |
negative_prompt=negative_prompt,
|
617 |
control_image=control_image,
|
618 |
+
num_images=num_images,
|
|
|
619 |
num_steps=num_steps,
|
620 |
guidance_scale=guidance_scale,
|
621 |
seed=seed,
|
622 |
)
|
623 |
+
return [vis_control_image] + results
|