Spaces:
Running
Running
Stop using cpu_offload
Browse files
model.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
# The original license file is LICENSE.ControlNet in this repo.
|
3 |
from __future__ import annotations
|
4 |
|
|
|
5 |
import pathlib
|
6 |
import sys
|
7 |
|
@@ -24,7 +25,6 @@ from annotator.mlsd import apply_mlsd
|
|
24 |
from annotator.openpose import apply_openpose
|
25 |
from annotator.uniformer import apply_uniformer
|
26 |
from annotator.util import HWC3, resize_image
|
27 |
-
from share import *
|
28 |
|
29 |
CONTROLNET_MODEL_IDS = {
|
30 |
'canny': 'lllyasviel/sd-controlnet-canny',
|
@@ -47,6 +47,8 @@ class Model:
|
|
47 |
def __init__(self,
|
48 |
base_model_id: str = 'runwayml/stable-diffusion-v1-5',
|
49 |
task_name: str = 'canny'):
|
|
|
|
|
50 |
self.base_model_id = ''
|
51 |
self.task_name = ''
|
52 |
self.pipe = self.load_pipe(base_model_id, task_name)
|
@@ -55,33 +57,41 @@ class Model:
|
|
55 |
if base_model_id == self.base_model_id and task_name == self.task_name:
|
56 |
return self.pipe
|
57 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
58 |
-
controlnet = ControlNetModel.from_pretrained(model_id
|
59 |
-
torch_dtype=torch.float16)
|
60 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
61 |
-
base_model_id,
|
62 |
-
safety_checker=None,
|
63 |
-
controlnet=controlnet,
|
64 |
-
torch_dtype=torch.float16)
|
65 |
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
66 |
pipe.scheduler.config)
|
67 |
pipe.enable_xformers_memory_efficient_attention()
|
68 |
-
pipe.
|
|
|
|
|
69 |
self.base_model_id = base_model_id
|
70 |
self.task_name = task_name
|
71 |
return pipe
|
72 |
|
73 |
def set_base_model(self, base_model_id: str) -> str:
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
return self.base_model_id
|
76 |
|
77 |
def load_controlnet_weight(self, task_name: str) -> None:
|
78 |
if task_name == self.task_name:
|
79 |
return
|
|
|
|
|
|
|
80 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
81 |
-
controlnet = ControlNetModel.from_pretrained(model_id
|
82 |
-
|
83 |
-
|
84 |
-
cpu_offload_with_hook(controlnet, torch.device('cuda:0'))
|
85 |
self.pipe.controlnet = controlnet
|
86 |
self.task_name = task_name
|
87 |
|
|
|
2 |
# The original license file is LICENSE.ControlNet in this repo.
|
3 |
from __future__ import annotations
|
4 |
|
5 |
+
import gc
|
6 |
import pathlib
|
7 |
import sys
|
8 |
|
|
|
25 |
from annotator.openpose import apply_openpose
|
26 |
from annotator.uniformer import apply_uniformer
|
27 |
from annotator.util import HWC3, resize_image
|
|
|
28 |
|
29 |
CONTROLNET_MODEL_IDS = {
|
30 |
'canny': 'lllyasviel/sd-controlnet-canny',
|
|
|
47 |
def __init__(self,
|
48 |
base_model_id: str = 'runwayml/stable-diffusion-v1-5',
|
49 |
task_name: str = 'canny'):
|
50 |
+
self.device = torch.device(
|
51 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
52 |
self.base_model_id = ''
|
53 |
self.task_name = ''
|
54 |
self.pipe = self.load_pipe(base_model_id, task_name)
|
|
|
57 |
if base_model_id == self.base_model_id and task_name == self.task_name:
|
58 |
return self.pipe
|
59 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
60 |
+
controlnet = ControlNetModel.from_pretrained(model_id)
|
|
|
61 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
62 |
+
base_model_id, safety_checker=None, controlnet=controlnet)
|
|
|
|
|
|
|
63 |
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
64 |
pipe.scheduler.config)
|
65 |
pipe.enable_xformers_memory_efficient_attention()
|
66 |
+
pipe.to(self.device)
|
67 |
+
torch.cuda.empty_cache()
|
68 |
+
gc.collect()
|
69 |
self.base_model_id = base_model_id
|
70 |
self.task_name = task_name
|
71 |
return pipe
|
72 |
|
73 |
def set_base_model(self, base_model_id: str) -> str:
|
74 |
+
if not base_model_id or base_model_id == self.base_model_id:
|
75 |
+
return self.base_model_id
|
76 |
+
del self.pipe
|
77 |
+
torch.cuda.empty_cache()
|
78 |
+
gc.collect()
|
79 |
+
try:
|
80 |
+
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
81 |
+
except Exception:
|
82 |
+
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
|
83 |
return self.base_model_id
|
84 |
|
85 |
def load_controlnet_weight(self, task_name: str) -> None:
|
86 |
if task_name == self.task_name:
|
87 |
return
|
88 |
+
del self.pipe.controlnet
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
gc.collect()
|
91 |
model_id = CONTROLNET_MODEL_IDS[task_name]
|
92 |
+
controlnet = ControlNetModel.from_pretrained(model_id).to(self.device)
|
93 |
+
torch.cuda.empty_cache()
|
94 |
+
gc.collect()
|
|
|
95 |
self.pipe.controlnet = controlnet
|
96 |
self.task_name = task_name
|
97 |
|