Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import shlex | |
import subprocess | |
import sys | |
import gradio as gr | |
import PIL.Image | |
import spaces | |
import torch | |
from diffusers import DPMSolverMultistepScheduler | |
if os.getenv("SYSTEM") == "spaces": | |
with open("patch") as f: | |
subprocess.run(shlex.split("patch -p1"), cwd="multires_textual_inversion", stdin=f) | |
sys.path.insert(0, "multires_textual_inversion") | |
from pipeline import MultiResPipeline, load_learned_concepts | |
DESCRIPTION = "# [Multiresolution Textual Inversion](https://github.com/giannisdaras/multires_textual_inversion)" | |
DETAILS = """ | |
- To run the Semi Resolution-Dependent sampler, use the format: `<jane(number)>`. | |
- To run the Fully Resolution-Dependent sampler, use the format: `<jane[number]>`. | |
- To run the Fixed Resolution sampler, use the format: `<jane|number|>`. | |
For this demo, only `<jane>`, `<gta5-artwork>` and `<cat-toy>` are available. | |
Also, `number` should be an integer in [0, 9]. | |
""" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model_id = "ashllay/stable-diffusion-v1-5-archive" | |
if device.type == "cpu": | |
pipe = MultiResPipeline.from_pretrained(model_id) | |
else: | |
pipe = MultiResPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
pipe.scheduler = DPMSolverMultistepScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
trained_betas=None, | |
prediction_type="epsilon", | |
thresholding=False, | |
algorithm_type="dpmsolver++", | |
solver_type="midpoint", | |
lower_order_final=True, | |
) | |
string_to_param_dict = load_learned_concepts(pipe, "textual_inversion_outputs/") | |
for k, v in list(string_to_param_dict.items()): | |
string_to_param_dict[k] = v.to(device) | |
pipe.to(device) | |
pipe.text_encoder.to(device) | |
def run(prompt: str, n_images: int, n_steps: int, seed: int) -> list[PIL.Image.Image]: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
return pipe( | |
[prompt] * n_images, | |
string_to_param_dict, | |
num_inference_steps=n_steps, | |
generator=generator, | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt") | |
with gr.Row(): | |
num_images = gr.Slider( | |
label="Number of images", | |
minimum=1, | |
maximum=9, | |
step=1, | |
value=1, | |
) | |
with gr.Row(): | |
num_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=10, | |
) | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=100) | |
with gr.Row(): | |
run_button = gr.Button() | |
with gr.Column(): | |
result = gr.Gallery(label="Result", object_fit="scale-down") | |
with gr.Row(): | |
with gr.Group(): | |
fn = lambda x: run(x, 2, 10, 100) | |
with gr.Row(): | |
gr.Examples( | |
label="Examples 1", | |
examples=[ | |
["an image of <gta5-artwork(0)>"], | |
["an image of <jane(0)>"], | |
["an image of <jane(3)>"], | |
["an image of <cat-toy(0)>"], | |
], | |
inputs=prompt, | |
outputs=result, | |
fn=fn, | |
) | |
with gr.Row(): | |
gr.Examples( | |
label="Examples 2", | |
examples=[ | |
["an image of a cat in the style of <gta5-artwork(0)>"], | |
["a painting of a dog in the style of <jane(0)>"], | |
["a painting of a dog in the style of <jane(5)>"], | |
["a painting of a <cat-toy(0)> in the style of <jane(3)>"], | |
], | |
inputs=prompt, | |
outputs=result, | |
fn=fn, | |
) | |
with gr.Row(): | |
gr.Examples( | |
label="Examples 3", | |
examples=[ | |
["an image of <jane[0]>"], | |
["an image of <jane|0|>"], | |
["an image of <jane|3|>"], | |
], | |
inputs=prompt, | |
outputs=result, | |
fn=fn, | |
) | |
inputs = [ | |
prompt, | |
num_images, | |
num_steps, | |
seed, | |
] | |
prompt.submit( | |
fn=run, | |
inputs=inputs, | |
outputs=result, | |
api_name=False, | |
) | |
run_button.click( | |
fn=run, | |
inputs=inputs, | |
outputs=result, | |
api_name="run", | |
) | |
with gr.Accordion("About available prompts", open=False): | |
gr.Markdown(DETAILS) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |