Spaces:
Running
on
Zero
Running
on
Zero
Add files
Browse files- .gitignore +1 -0
- .gitmodules +3 -0
- .pre-commit-config.yaml +36 -0
- .style.yapf +5 -0
- app.py +129 -0
- model.py +59 -0
- multires_textual_inversion +1 -0
- patch +41 -0
- requirements.txt +6 -0
- style.css +7 -0
- textual_inversion_outputs/cat-toy/text_encoder/config.json +25 -0
- textual_inversion_outputs/cat-toy/text_encoder/pytorch_model.bin +3 -0
- textual_inversion_outputs/gta5-artwork/text_encoder/config.json +25 -0
- textual_inversion_outputs/gta5-artwork/text_encoder/pytorch_model.bin +3 -0
- textual_inversion_outputs/jane/text_encoder/config.json +25 -0
- textual_inversion_outputs/jane/text_encoder/pytorch_model.bin +3 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gradio_cached_examples
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "multires_textual_inversion"]
|
2 |
+
path = multires_textual_inversion
|
3 |
+
url = https://github.com/giannisdaras/multires_textual_inversion
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: patch
|
2 |
+
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.2.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: double-quote-string-fixer
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: mixed-line-ending
|
15 |
+
args: ['--fix=lf']
|
16 |
+
- id: requirements-txt-fixer
|
17 |
+
- id: trailing-whitespace
|
18 |
+
- repo: https://github.com/myint/docformatter
|
19 |
+
rev: v1.4
|
20 |
+
hooks:
|
21 |
+
- id: docformatter
|
22 |
+
args: ['--in-place']
|
23 |
+
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.10.1
|
25 |
+
hooks:
|
26 |
+
- id: isort
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.812
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ['--ignore-missing-imports']
|
32 |
+
- repo: https://github.com/google/yapf
|
33 |
+
rev: v0.32.0
|
34 |
+
hooks:
|
35 |
+
- id: yapf
|
36 |
+
args: ['--parallel', '--in-place']
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from model import Model
|
10 |
+
|
11 |
+
TITLE = '# Multiresolution Textual Inversion'
|
12 |
+
DESCRIPTION = 'An unofficial demo for [https://github.com/giannisdaras/multires_textual_inversion](https://github.com/giannisdaras/multires_textual_inversion).'
|
13 |
+
|
14 |
+
DETAILS = '''
|
15 |
+
- To run the Semi Resolution-Dependent sampler, use the format: `<jane(number)>`.
|
16 |
+
- To run the Fully Resolution-Dependent sampler, use the format: `<jane[number]>`.
|
17 |
+
- To run the Fixed Resolution sampler, use the format: `<jane|number|>`.
|
18 |
+
|
19 |
+
For this demo, only `<jane>`, `<gta5-artwork>` and `<cat-toy>` are available.
|
20 |
+
Also, `number` should be an integer in [0, 9].
|
21 |
+
'''
|
22 |
+
FOOTER = '<img id="visitor-badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.multires-textual-inversion" alt="visitor badge" />'
|
23 |
+
|
24 |
+
CACHE_EXAMPLES = os.getenv('SYSTEM') == 'spaces'
|
25 |
+
|
26 |
+
|
27 |
+
def main():
|
28 |
+
model = Model()
|
29 |
+
|
30 |
+
with gr.Blocks(css='style.css') as demo:
|
31 |
+
gr.Markdown(TITLE)
|
32 |
+
gr.Markdown(DESCRIPTION)
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Group():
|
36 |
+
with gr.Row():
|
37 |
+
prompt = gr.Textbox(label='Prompt')
|
38 |
+
with gr.Row():
|
39 |
+
num_images = gr.Slider(1,
|
40 |
+
9,
|
41 |
+
value=1,
|
42 |
+
step=1,
|
43 |
+
label='Number of images')
|
44 |
+
with gr.Row():
|
45 |
+
num_steps = gr.Slider(1,
|
46 |
+
50,
|
47 |
+
value=10,
|
48 |
+
step=1,
|
49 |
+
label='Number of inference steps')
|
50 |
+
with gr.Row():
|
51 |
+
seed = gr.Slider(0,
|
52 |
+
100000,
|
53 |
+
value=100,
|
54 |
+
step=1,
|
55 |
+
label='Seed')
|
56 |
+
with gr.Row():
|
57 |
+
run_button = gr.Button('Run')
|
58 |
+
|
59 |
+
with gr.Column():
|
60 |
+
result = gr.Gallery(label='Result')
|
61 |
+
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Group():
|
64 |
+
fn = lambda x: model.run(x, 2, 10, 100)
|
65 |
+
with gr.Row():
|
66 |
+
gr.Examples(
|
67 |
+
label='Examples 1',
|
68 |
+
examples=[
|
69 |
+
['an image of <gta5-artwork(0)>'],
|
70 |
+
['an image of <jane(0)>'],
|
71 |
+
['an image of <jane(3)>'],
|
72 |
+
['an image of <cat-toy(0)>'],
|
73 |
+
],
|
74 |
+
inputs=[prompt],
|
75 |
+
outputs=[result],
|
76 |
+
fn=fn,
|
77 |
+
cache_examples=CACHE_EXAMPLES,
|
78 |
+
)
|
79 |
+
with gr.Row():
|
80 |
+
gr.Examples(
|
81 |
+
label='Examples 2',
|
82 |
+
examples=[
|
83 |
+
[
|
84 |
+
'an image of a cat in the style of <gta5-artwork(0)>'
|
85 |
+
],
|
86 |
+
['a painting of a dog in the style of <jane(0)>'],
|
87 |
+
['a painting of a dog in the style of <jane(5)>'],
|
88 |
+
[
|
89 |
+
'a painting of a <cat-toy(0)> in the style of <jane(3)>'
|
90 |
+
],
|
91 |
+
],
|
92 |
+
inputs=[prompt],
|
93 |
+
outputs=[result],
|
94 |
+
fn=fn,
|
95 |
+
cache_examples=CACHE_EXAMPLES,
|
96 |
+
)
|
97 |
+
with gr.Row():
|
98 |
+
gr.Examples(
|
99 |
+
label='Examples 3',
|
100 |
+
examples=[
|
101 |
+
['an image of <jane[0]>'],
|
102 |
+
['an image of <jane|0|>'],
|
103 |
+
['an image of <jane|3|>'],
|
104 |
+
],
|
105 |
+
inputs=[prompt],
|
106 |
+
outputs=[result],
|
107 |
+
fn=fn,
|
108 |
+
cache_examples=CACHE_EXAMPLES,
|
109 |
+
)
|
110 |
+
|
111 |
+
prompt.submit(
|
112 |
+
fn=model.run,
|
113 |
+
inputs=[prompt, num_images, num_steps, seed],
|
114 |
+
outputs=[result],
|
115 |
+
)
|
116 |
+
run_button.click(
|
117 |
+
fn=model.run,
|
118 |
+
inputs=[prompt, num_images, num_steps, seed],
|
119 |
+
outputs=[result],
|
120 |
+
)
|
121 |
+
|
122 |
+
with gr.Accordion('About available prompts', open=False):
|
123 |
+
gr.Markdown(DETAILS)
|
124 |
+
gr.Markdown(FOOTER)
|
125 |
+
demo.launch(enable_queue=True, share=False)
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == '__main__':
|
129 |
+
main()
|
model.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import sys
|
6 |
+
|
7 |
+
import PIL.Image
|
8 |
+
import torch
|
9 |
+
from diffusers import DPMSolverMultistepScheduler
|
10 |
+
|
11 |
+
if os.getenv('SYSTEM') == 'spaces':
|
12 |
+
with open('patch') as f:
|
13 |
+
subprocess.run('patch -p1'.split(),
|
14 |
+
cwd='multires_textual_inversion',
|
15 |
+
stdin=f)
|
16 |
+
|
17 |
+
sys.path.insert(0, 'multires_textual_inversion')
|
18 |
+
|
19 |
+
from pipeline import MultiResPipeline, load_learned_concepts
|
20 |
+
|
21 |
+
HF_TOKEN = os.environ.get('HF_TOKEN')
|
22 |
+
|
23 |
+
|
24 |
+
class Model:
|
25 |
+
def __init__(self):
|
26 |
+
self.device = torch.device(
|
27 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
28 |
+
model_id = 'runwayml/stable-diffusion-v1-5'
|
29 |
+
if self.device.type == 'cpu':
|
30 |
+
pipe = MultiResPipeline.from_pretrained(model_id,
|
31 |
+
use_auth_token=HF_TOKEN)
|
32 |
+
else:
|
33 |
+
pipe = MultiResPipeline.from_pretrained(model_id,
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
revision='fp16',
|
36 |
+
use_auth_token=HF_TOKEN)
|
37 |
+
self.pipe = pipe.to(self.device)
|
38 |
+
self.pipe.scheduler = DPMSolverMultistepScheduler(
|
39 |
+
beta_start=0.00085,
|
40 |
+
beta_end=0.012,
|
41 |
+
beta_schedule='scaled_linear',
|
42 |
+
num_train_timesteps=1000,
|
43 |
+
trained_betas=None,
|
44 |
+
predict_epsilon=True,
|
45 |
+
thresholding=False,
|
46 |
+
algorithm_type='dpmsolver++',
|
47 |
+
solver_type='midpoint',
|
48 |
+
lower_order_final=True,
|
49 |
+
)
|
50 |
+
self.string_to_param_dict = load_learned_concepts(
|
51 |
+
self.pipe, 'textual_inversion_outputs/')
|
52 |
+
|
53 |
+
def run(self, prompt: str, n_images: int, n_steps: int,
|
54 |
+
seed: int) -> list[PIL.Image.Image]:
|
55 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
56 |
+
return self.pipe([prompt] * n_images,
|
57 |
+
self.string_to_param_dict,
|
58 |
+
num_inference_steps=n_steps,
|
59 |
+
generator=generator)
|
multires_textual_inversion
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit ebe79d70929f9f4fabde9d038d1e948a05b3027f
|
patch
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/pipeline.py b/pipeline.py
|
2 |
+
index 7c41e04..842c5b4 100644
|
3 |
+
--- a/pipeline.py
|
4 |
+
+++ b/pipeline.py
|
5 |
+
@@ -27,7 +27,7 @@ def load_learned_concepts(pipe, root_folder="selected_outputs/", num_scales=10):
|
6 |
+
for exp_name in os.listdir(root_folder):
|
7 |
+
# get everything up to the first numeric
|
8 |
+
pure_names.append(exp_name)
|
9 |
+
- encoder = torch.load(os.path.join(root_folder, exp_name, "text_encoder/pytorch_model.bin"))
|
10 |
+
+ encoder = torch.load(os.path.join(root_folder, exp_name, "text_encoder/pytorch_model.bin"), map_location=pipe.device)
|
11 |
+
embeddings = encoder["text_model.embeddings.token_embedding.weight"]
|
12 |
+
param_value = embeddings[-10:]
|
13 |
+
|
14 |
+
@@ -36,23 +36,23 @@ def load_learned_concepts(pipe, root_folder="selected_outputs/", num_scales=10):
|
15 |
+
string_name = f"<{exp_name}|{t}|>"
|
16 |
+
tokens_to_add.append(string_name)
|
17 |
+
string_to_param_dict[string_name] = torch.nn.Parameter(param_value[t].unsqueeze(0).repeat([num_scales, 1]))
|
18 |
+
-
|
19 |
+
+
|
20 |
+
# Fully Resolution: use appropriate time embedding for the whole generation time.
|
21 |
+
string_name = f"<{exp_name}[{t}]>"
|
22 |
+
tokens_to_add.append(string_name)
|
23 |
+
repeats = t + 1
|
24 |
+
rep_param = param_value[t].unsqueeze(0).repeat([repeats, 1])
|
25 |
+
left = param_value[rep_param.shape[0]:]
|
26 |
+
- new_param = torch.cat([rep_param, left])
|
27 |
+
+ new_param = torch.cat([rep_param, left])
|
28 |
+
string_to_param_dict[string_name] = torch.nn.Parameter(new_param)
|
29 |
+
|
30 |
+
# Semi Resolution: use appropriate time embedding up to a certain time and then no conditioning.
|
31 |
+
string_name = f"<{exp_name}({t})>"
|
32 |
+
tokens_to_add.append(string_name)
|
33 |
+
- null_embedding = torch.zeros((param_value.shape[1],), device=param_value.device, dtype=param_value.dtype)
|
34 |
+
+ null_embedding = torch.zeros((param_value.shape[1],), device=pipe.device, dtype=param_value.dtype)
|
35 |
+
rep_param = null_embedding.unsqueeze(0).repeat([t + 1, 1])
|
36 |
+
left = param_value[rep_param.shape[0]:]
|
37 |
+
- new_param = torch.cat([rep_param, left])
|
38 |
+
+ new_param = torch.cat([rep_param, left])
|
39 |
+
string_to_param_dict[string_name] = torch.nn.Parameter(new_param)
|
40 |
+
|
41 |
+
pipe.tokenizer.add_tokens(tokens_to_add)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.12.0
|
2 |
+
diffusers==0.9.0
|
3 |
+
ftfy==6.1.1
|
4 |
+
Pillow==9.2.0
|
5 |
+
torch==1.12.1
|
6 |
+
transformers==4.22.1
|
style.css
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
4 |
+
img#visitor-badge {
|
5 |
+
display: block;
|
6 |
+
margin: auto;
|
7 |
+
}
|
textual_inversion_outputs/cat-toy/text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "runwayml/stable-diffusion-v1-5",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.24.0",
|
24 |
+
"vocab_size": 49418
|
25 |
+
}
|
textual_inversion_outputs/cat-toy/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98b628c646c93aeb917cfaba0d1af0dbf2a7348cc614acce5f3fddda597cbd2e
|
3 |
+
size 492338807
|
textual_inversion_outputs/gta5-artwork/text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "runwayml/stable-diffusion-v1-5",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.24.0",
|
24 |
+
"vocab_size": 49418
|
25 |
+
}
|
textual_inversion_outputs/gta5-artwork/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4812193a5df98edf62d3df13460f886572a71ab8585545520c44b92a7b8e1bd2
|
3 |
+
size 492338807
|
textual_inversion_outputs/jane/text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "runwayml/stable-diffusion-v1-5",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "quick_gelu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 768,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.21.0",
|
24 |
+
"vocab_size": 49418
|
25 |
+
}
|
textual_inversion_outputs/jane/text_encoder/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8acb7b5f0e2b8c10a349cddec2ef577e34e91e74f9107683465508b8aab511da
|
3 |
+
size 492338807
|