Spaces:
Runtime error
Runtime error
from sentence_transformers import SentenceTransformer | |
import gradio as gr | |
import faiss | |
import numpy as np | |
model = SentenceTransformer('models/all-mpnet-base-v2') | |
model.to('cuda') | |
def EmdeddingVect(sentences): | |
return model.encode([sentences]) # Assume model.encode() function exists | |
# Load the arrays | |
all_embeddings = np.load('models/all_embeddings.npy') | |
all_labels = np.load('models/all_labels.npy') | |
index = faiss.IndexFlatL2(768) | |
index.add(all_embeddings.astype('float32')) | |
def search_query(k, query_sentence): | |
query_embeddings = EmdeddingVect(query_sentence) | |
distances, indices = index.search(query_embeddings.astype('float32'), int(k)) | |
ai_count = np.sum(all_labels[indices[0]] == 'AI') | |
ai_probability = (ai_count / int(k)) * 100 | |
human_probability = 100 - ai_probability | |
return f"Probability of being AI: {ai_probability:.2f}%", f"Probability of being Human: {human_probability:.2f}%" | |
iface = gr.Interface( | |
fn=search_query, | |
inputs=[ | |
gr.inputs.Slider(minimum=1, maximum=10, default=3, label="k (Number of Neighbors)"), | |
gr.inputs.Textbox(label="Text to be Detected") | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="AI Probability"), | |
gr.outputs.Textbox(label="Human Probability") | |
] | |
) | |
iface.launch() | |