|
import datetime |
|
import gradio as gr |
|
from huggingface_hub import hf_hub_download |
|
import fasttext, torch, clip |
|
from sentence_transformers import SentenceTransformer, util |
|
|
|
model_en, _ = clip.load("ViT-B/32") |
|
model_multi = SentenceTransformer("sentence-transformers/clip-ViT-B-32-multilingual-v1") |
|
|
|
fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin")) |
|
|
|
def prep_examples(): |
|
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \ |
|
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \ |
|
However, some will become seriously ill and require medical attention." |
|
example_labels1 = "business;;health related;;politics;;climate change" |
|
|
|
example_text2 = "Elephants are" |
|
example_labels2 = "big;;small;;strong;;fast;;carnivorous" |
|
|
|
example_text3 = "Elephants" |
|
example_labels3 = "are big;;can be very small;;generally not strong enough;;are faster than you think" |
|
|
|
example_text4 = "Dogs are man's best friend" |
|
example_labels4 = "positive;;negative;;neutral" |
|
|
|
example_text5 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \ |
|
Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \ |
|
Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi." |
|
example_labels5 = "dünya;;ekonomi;;kültür;;siyaset;;spor;;teknoloji" |
|
|
|
example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie" |
|
example_labels6 = "verbrechen;;tragödie;;stehlen" |
|
|
|
example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo" |
|
example_labels7 = "cultura;;sociedad;;economia;;salud;;deportes" |
|
|
|
example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \ |
|
и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \ |
|
войск от границ Украины." |
|
example_labels8 = "новости;;комедия" |
|
|
|
example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \ |
|
hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi." |
|
example_labels9 = "cinema;;politica;;cibo" |
|
|
|
example_text10 = "Ja, vi elsker dette landet,\ |
|
som det stiger frem,\ |
|
furet, værbitt over vannet,\ |
|
med de tusen hjem.\ |
|
Og som fedres kamp har hevet\ |
|
det av nød til seir" |
|
example_labels10 = "helse;;sport;;religion;;mat;;patriotisme og nasjonalisme" |
|
|
|
example_text11 = "Amar sonar bangla ami tomay bhalobasi" |
|
example_labels11 = "bhalo;;kharap" |
|
|
|
examples = [ |
|
[example_text1, example_labels1, ""], |
|
[example_text2, example_labels2, ""], |
|
[example_text3, example_labels3, ""], |
|
[example_text4, example_labels4, ""], |
|
[example_text5, example_labels5, ""], |
|
[example_text6, example_labels6, ""], |
|
[example_text7, example_labels7, ""], |
|
[example_text8, example_labels8, ""], |
|
[example_text9, example_labels9, ""], |
|
[example_text10, example_labels10, ""], |
|
[example_text11, example_labels11, ""]] |
|
|
|
return examples |
|
|
|
def detect_lang(text): |
|
seq_lang = 'en' |
|
|
|
text = text.replace('\n', ' ') |
|
|
|
try: |
|
seq_lang = fasttext_model.predict(text, k=1)[0][0].split("__label__")[1] |
|
except: |
|
print("Language detection failed!", |
|
"Date:{}, Sequence: {}".format( |
|
str(datetime.datetime.now()), |
|
text)) |
|
|
|
return seq_lang |
|
|
|
def sequence_to_classify(text, labels, hypothesis_template): |
|
lang = detect_lang(text) |
|
if lang == 'en': |
|
model = model_en |
|
else: |
|
model = model_multi |
|
|
|
hypothesis_template += " {}" |
|
labels = [hypothesis_template.format(label) for label in labels.split(";;")] |
|
|
|
if str(type(model)) == "<class 'clip.model.CLIP'>": |
|
text_tokens = clip.tokenize(text) |
|
text_features = model.encode_text(text_tokens) |
|
|
|
label_tokens = clip.tokenize(labels) |
|
labels_features = model.encode_text(label_tokens) |
|
else: |
|
text_features = torch.tensor(model.encode(text)) |
|
labels_features = torch.tensor(self.model.encode(labels)) |
|
|
|
sim_scores = util.cos_sim(text_features, labels_features) |
|
preds = [] |
|
for textlet, sim_score in zip([text], sim_scores): |
|
out = [] |
|
pred = {} |
|
for raw_score in sim_score: |
|
out.append(raw_score.item() * 100) |
|
probs = torch.tensor([out]) |
|
probs = probs.softmax(dim=-1).cpu().numpy() |
|
scores = list(probs.flatten()) |
|
|
|
sorted_sl = sorted(zip(scores, labels), key=lambda t:t[0], reverse=True) |
|
|
|
pred["text"] = textlet |
|
pred["scores"], pred["labels"] = zip(*sorted_sl) |
|
preds.append(pred) |
|
|
|
print(preds) |
|
if len(preds) == 1: |
|
preds = preds[0] |
|
|
|
predicted_labels = list(preds['labels']) |
|
predicted_scores = list(preds['scores']) |
|
print(predicted_labels) |
|
print(predicted_scores) |
|
output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels} |
|
print("Date:{}, Sequence:{}, Labels: {}".format( |
|
str(datetime.datetime.now()), |
|
text, |
|
predicted_labels)) |
|
|
|
return output |
|
|
|
iface = gr.Interface( |
|
title="Light-weight Zero-shot NLP Classifier", |
|
description="Multi-label Multilingual classifier which uses Sentence Transformer / OpenAI CLIP.", |
|
fn=sequence_to_classify, |
|
inputs=[gr.inputs.Textbox(lines=10, |
|
label="Please enter the text you would like to classify...", |
|
placeholder="Text here..."), |
|
gr.inputs.Textbox(lines=2, |
|
label="Please enter the candidate labels (separated by 2 consecutive semicolons)...", |
|
placeholder="Labels here separated by ;;"), |
|
gr.inputs.Textbox(lines=2, |
|
label="Please enter the text for hypothesis template (optional)...", |
|
placeholder="Text here...")], |
|
outputs=gr.outputs.Label(num_top_classes=5), |
|
|
|
examples=prep_examples()) |
|
|
|
iface.launch() |
|
|