Kaushik Bar commited on
Commit
5da0eba
1 Parent(s): 37fe09a

first commit

Browse files
Files changed (2) hide show
  1. app.py +6 -4
  2. requirements.txt +1 -1
app.py CHANGED
@@ -1,12 +1,14 @@
1
  import datetime
2
  import gradio as gr
3
- from langdetect import DetectorFactory
4
  import fasttext, torch, clip
5
  from sentence_transformers import SentenceTransformer, util
6
 
7
  model_en, _ = clip.load("ViT-B/32")
8
  model_multi = SentenceTransformer("sentence-transformers/clip-ViT-B-32-multilingual-v1")
9
 
 
 
10
  def prep_examples():
11
  example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
12
  people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
@@ -78,7 +80,7 @@ def detect_lang(text):
78
  seq_lang = fasttext_model.predict(text, k=1)[0][0].split("__label__")[1]
79
  except:
80
  print("Language detection failed!",
81
- "Date:{}, Sequence:{}".format(
82
  str(datetime.datetime.now()),
83
  text))
84
 
@@ -88,10 +90,10 @@ def sequence_to_classify(text, labels):
88
  lang = detect_lang(text)
89
  if lang == 'en':
90
  model = model_en
91
- hypothesis_template = "This example is {}."
92
  else:
93
  model = model_multi
94
- hypothesis_template = "{}."
95
 
96
  labels = [hypothesis_template.format(label) for label in labels.split(";;")]
97
 
 
1
  import datetime
2
  import gradio as gr
3
+ from huggingface_hub import hf_hub_download
4
  import fasttext, torch, clip
5
  from sentence_transformers import SentenceTransformer, util
6
 
7
  model_en, _ = clip.load("ViT-B/32")
8
  model_multi = SentenceTransformer("sentence-transformers/clip-ViT-B-32-multilingual-v1")
9
 
10
+ fasttext_model = fasttext.load_model(hf_hub_download("julien-c/fasttext-language-id", "lid.176.bin"))
11
+
12
  def prep_examples():
13
  example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
14
  people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
 
80
  seq_lang = fasttext_model.predict(text, k=1)[0][0].split("__label__")[1]
81
  except:
82
  print("Language detection failed!",
83
+ "Date:{}, Sequence: {}".format(
84
  str(datetime.datetime.now()),
85
  text))
86
 
 
90
  lang = detect_lang(text)
91
  if lang == 'en':
92
  model = model_en
93
+ hypothesis_template = "{}"
94
  else:
95
  model = model_multi
96
+ hypothesis_template = "{}"
97
 
98
  labels = [hypothesis_template.format(label) for label in labels.split(";;")]
99
 
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
  torch
2
  sentence-transformers
3
  git+https://github.com/openai/CLIP.git
4
- langdetect
5
  fasttext
 
1
  torch
2
  sentence-transformers
3
  git+https://github.com/openai/CLIP.git
4
+ huggingface_hub
5
  fasttext