File size: 16,213 Bytes
b585c7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import ast
import os
import sys
from typing import Union, List
if os.path.dirname(os.path.abspath(os.path.join(__file__, '..'))) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath(os.path.join(__file__, '..'))))
from gpt_langchain import path_to_docs, get_some_dbs_from_hf, all_db_zips, some_db_zips, create_or_update_db, \
get_persist_directory, get_existing_db
from utils import H2O_Fire, makedirs, n_gpus_global
def glob_to_db(user_path, chunk=True, chunk_size=512, verbose=False,
fail_any_exception=False, n_jobs=-1, url=None,
# urls
use_unstructured=True,
use_playwright=False,
use_selenium=False,
use_scrapeplaywright=False,
use_scrapehttp=False,
# pdfs
use_pymupdf='auto',
use_unstructured_pdf='auto',
use_pypdf='auto',
enable_pdf_ocr='auto',
try_pdf_as_html='auto',
enable_pdf_doctr='auto',
# images
enable_ocr=False,
enable_doctr=False,
enable_pix2struct=False,
enable_captions=True,
enable_llava=True,
enable_transcriptions=True,
captions_model=None,
caption_loader=None,
doctr_loader=None,
llava_model=None,
llava_prompt=None,
asr_model=None,
asr_loader=None,
# json
jq_schema='.[]',
extract_frames=10,
db_type=None,
selected_file_types=None,
is_public=False):
assert db_type is not None
loaders_and_settings = dict(
# diag/error handling
verbose=verbose, fail_any_exception=fail_any_exception,
# speed
n_jobs=n_jobs,
# chunking
chunk=chunk,
chunk_size=chunk_size,
# urls
use_unstructured=use_unstructured,
use_playwright=use_playwright,
use_selenium=use_selenium,
use_scrapeplaywright=use_scrapeplaywright,
use_scrapehttp=use_scrapehttp,
# pdfs
use_pymupdf=use_pymupdf,
use_unstructured_pdf=use_unstructured_pdf,
use_pypdf=use_pypdf,
enable_pdf_ocr=enable_pdf_ocr,
try_pdf_as_html=try_pdf_as_html,
enable_pdf_doctr=enable_pdf_doctr,
# images
enable_ocr=enable_ocr,
enable_doctr=enable_doctr,
enable_pix2struct=enable_pix2struct,
enable_captions=enable_captions,
enable_llava=enable_llava,
enable_transcriptions=enable_transcriptions,
captions_model=captions_model,
caption_loader=caption_loader,
doctr_loader=doctr_loader,
llava_model=llava_model,
llava_prompt=llava_prompt,
asr_model=asr_model,
asr_loader=asr_loader,
# json
jq_schema=jq_schema,
extract_frames=extract_frames,
db_type=db_type,
is_public=is_public,
)
sources1 = path_to_docs(user_path,
url=url,
**loaders_and_settings,
selected_file_types=selected_file_types,
)
return sources1
def make_db_main(use_openai_embedding: bool = False,
hf_embedding_model: str = None,
migrate_embedding_model=False,
auto_migrate_db=False,
persist_directory: str = None,
user_path: str = 'user_path',
langchain_type: str = 'shared',
url: Union[List[str], str] = None,
add_if_exists: bool = True,
collection_name: str = 'UserData',
verbose: bool = False,
chunk: bool = True,
chunk_size: int = 512,
fail_any_exception: bool = False,
download_all: bool = False,
download_some: bool = False,
download_one: str = None,
download_dest: str = None,
n_jobs: int = -1,
# urls
use_unstructured=True,
use_playwright=False,
use_selenium=False,
use_scrapeplaywright=False,
use_scrapehttp=False,
# pdfs
use_pymupdf='auto',
use_unstructured_pdf='auto',
use_pypdf='auto',
enable_pdf_ocr='auto',
enable_pdf_doctr='auto',
try_pdf_as_html='auto',
# images
enable_ocr=False,
enable_doctr=False,
enable_pix2struct=False,
enable_captions=True,
enable_llava=True,
captions_model: str = "Salesforce/blip-image-captioning-base",
llava_model: str = None,
llava_prompt: str = None,
pre_load_image_audio_models: bool = False,
caption_gpu: bool = True,
# caption_loader=None, # set internally
# doctr_loader=None, # set internally
# asr_loader=None # set internally
enable_transcriptions: bool = True,
asr_model: str = "openai/whisper-medium",
asr_gpu: bool = True,
# json
jq_schema='.[]',
extract_frames=10,
db_type: str = 'chroma',
selected_file_types: Union[List[str], str] = None,
fail_if_no_sources: bool = True
):
"""
# To make UserData db for generate.py, put pdfs, etc. into path user_path and run:
python src/make_db.py
# once db is made, can use in generate.py like:
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --langchain_mode=UserData
or zip-up the db_dir_UserData and share:
zip -r db_dir_UserData.zip db_dir_UserData
# To get all db files (except large wiki_full) do:
python src/make_db.py --download_some=True
# To get a single db file from HF:
python src/make_db.py --download_one=db_dir_DriverlessAI_docs.zip
:param use_openai_embedding: Whether to use OpenAI embedding
:param hf_embedding_model: HF embedding model to use. Like generate.py, uses 'hkunlp/instructor-large' if have GPUs, else "sentence-transformers/all-MiniLM-L6-v2"
:param migrate_embedding_model: whether to migrate to newly chosen hf_embedding_model or stick with one in db
:param auto_migrate_db: whether to migrate database for chroma<0.4 -> >0.4
:param persist_directory: where to persist db (note generate.py always uses db_dir_<collection name>
If making personal database for user, set persistent_directory to users/<username>/db_dir_<collection name>
and pass --langchain_type=personal
:param user_path: where to pull documents from (None means url is not None. If url is not None, this is ignored.)
:param langchain_type: type of database, i.e.. 'shared' or 'personal'
:param url: url (or urls) to generate documents from (None means user_path is not None)
:param add_if_exists: Add to db if already exists, but will not add duplicate sources
:param collection_name: Collection name for new db if not adding
Normally same as langchain_mode
:param verbose: whether to show verbose messages
:param chunk: whether to chunk data
:param chunk_size: chunk size for chunking
:param fail_any_exception: whether to fail if any exception hit during ingestion of files
:param download_all: whether to download all (including 23GB Wikipedia) example databases from h2o.ai HF
:param download_some: whether to download some small example databases from h2o.ai HF
:param download_one: whether to download one chosen example databases from h2o.ai HF
:param download_dest: Destination for downloads
:param n_jobs: Number of cores to use for ingesting multiple files
:param use_unstructured: see gen.py
:param use_playwright: see gen.py
:param use_selenium: see gen.py
:param use_scrapeplaywright: see gen.py
:param use_scrapehttp: see gen.py
:param use_pymupdf: see gen.py
:param use_unstructured_pdf: see gen.py
:param use_pypdf: see gen.py
:param enable_pdf_ocr: see gen.py
:param try_pdf_as_html: see gen.py
:param enable_pdf_doctr: see gen.py
:param enable_ocr: see gen.py
:param enable_doctr: see gen.py
:param enable_pix2struct: see gen.py
:param enable_captions: Whether to enable captions on images
:param enable_llava: See gen.py
:param captions_model: See gen.py
:param llava_model: See gen.py
:param llava_prompt: See gen.py
:param pre_load_image_audio_models: See generate.py
:param caption_gpu: Caption images on GPU if present
:param db_type: 'faiss' for in-memory
'chroma' (for chroma >= 0.4)
'chroma_old' (for chroma < 0.4) -- recommended for large collections
'weaviate' for persisted on disk
:param selected_file_types: File types (by extension) to include if passing user_path
For a list of possible values, see:
https://github.com/h2oai/h2ogpt/blob/main/docs/README_LangChain.md#shoosing-document-types
e.g. --selected_file_types="['pdf', 'html', 'htm']"
:return: None
"""
db = None
if isinstance(selected_file_types, str):
selected_file_types = ast.literal_eval(selected_file_types)
if persist_directory is None:
persist_directory, langchain_type = get_persist_directory(collection_name, langchain_type=langchain_type)
if download_dest is None:
download_dest = makedirs('./', use_base=True)
# match behavior of main() in generate.py for non-HF case
n_gpus = n_gpus_global
if n_gpus == 0:
if hf_embedding_model is None:
# if no GPUs, use simpler embedding model to avoid cost in time
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
else:
if hf_embedding_model is None:
# if still None, then set default
hf_embedding_model = 'hkunlp/instructor-large'
existing_db = False
if download_all:
print("Downloading all (and unzipping): %s" % all_db_zips, flush=True)
get_some_dbs_from_hf(download_dest, db_zips=all_db_zips)
if verbose:
print("DONE", flush=True)
existing_db = True
elif download_some:
print("Downloading some (and unzipping): %s" % some_db_zips, flush=True)
get_some_dbs_from_hf(download_dest, db_zips=some_db_zips)
if verbose:
print("DONE", flush=True)
existing_db = True
elif download_one:
print("Downloading %s (and unzipping)" % download_one, flush=True)
get_some_dbs_from_hf(download_dest, db_zips=[[download_one, '', 'Unknown License']])
if verbose:
print("DONE", flush=True)
existing_db = True
if existing_db:
load_db_if_exists = True
langchain_mode = collection_name
langchain_mode_paths = dict(langchain_mode=None)
langchain_mode_types = dict(langchain_mode='shared')
db, use_openai_embedding, hf_embedding_model = \
get_existing_db(None, persist_directory, load_db_if_exists, db_type,
use_openai_embedding,
langchain_mode, langchain_mode_paths, langchain_mode_types,
hf_embedding_model, migrate_embedding_model, auto_migrate_db,
verbose=False,
n_jobs=n_jobs)
return db, collection_name
if enable_captions and pre_load_image_audio_models:
# preload, else can be too slow or if on GPU have cuda context issues
# Inside ingestion, this will disable parallel loading of multiple other kinds of docs
# However, if have many images, all those images will be handled more quickly by preloaded model on GPU
from image_captions import H2OImageCaptionLoader
caption_loader = H2OImageCaptionLoader(None,
blip_model=captions_model,
blip_processor=captions_model,
caption_gpu=caption_gpu,
).load_model()
else:
if enable_captions:
caption_loader = 'gpu' if n_gpus > 0 and caption_gpu else 'cpu'
else:
caption_loader = False
if enable_doctr or enable_pdf_ocr in [True, 'auto', 'on']:
doctr_loader = 'gpu' if n_gpus > 0 and caption_gpu else 'cpu'
else:
doctr_loader = False
if enable_transcriptions:
asr_loader = 'gpu' if n_gpus > 0 and asr_gpu else 'cpu'
else:
asr_loader = False
if verbose:
print("Getting sources", flush=True)
assert user_path is not None or url is not None, "Can't have both user_path and url as None"
if not url:
assert os.path.isdir(user_path), "user_path=%s does not exist" % user_path
sources = glob_to_db(user_path, chunk=chunk, chunk_size=chunk_size, verbose=verbose,
fail_any_exception=fail_any_exception, n_jobs=n_jobs, url=url,
# urls
use_unstructured=use_unstructured,
use_playwright=use_playwright,
use_selenium=use_selenium,
use_scrapeplaywright=use_scrapeplaywright,
use_scrapehttp=use_scrapehttp,
# pdfs
use_pymupdf=use_pymupdf,
use_unstructured_pdf=use_unstructured_pdf,
use_pypdf=use_pypdf,
enable_pdf_ocr=enable_pdf_ocr,
try_pdf_as_html=try_pdf_as_html,
enable_pdf_doctr=enable_pdf_doctr,
# images
enable_ocr=enable_ocr,
enable_doctr=enable_doctr,
enable_pix2struct=enable_pix2struct,
enable_captions=enable_captions,
enable_llava=enable_llava,
enable_transcriptions=enable_transcriptions,
captions_model=captions_model,
caption_loader=caption_loader,
doctr_loader=doctr_loader,
llava_model=llava_model,
llava_prompt=llava_prompt,
# Note: we don't reload doctr model
asr_loader=asr_loader,
asr_model=asr_model,
# json
jq_schema=jq_schema,
extract_frames=extract_frames,
db_type=db_type,
selected_file_types=selected_file_types,
is_public=False,
)
exceptions = [x for x in sources if x.metadata.get('exception')]
print("Exceptions: %s/%s %s" % (len(exceptions), len(sources), exceptions), flush=True)
sources = [x for x in sources if 'exception' not in x.metadata]
assert len(sources) > 0 or not fail_if_no_sources, "No sources found"
db = create_or_update_db(db_type, persist_directory,
collection_name, user_path, langchain_type,
sources, use_openai_embedding, add_if_exists, verbose,
hf_embedding_model, migrate_embedding_model, auto_migrate_db,
n_jobs=n_jobs)
assert db is not None or not fail_if_no_sources
if verbose:
print("DONE", flush=True)
return db, collection_name
if __name__ == "__main__":
H2O_Fire(make_db_main)
|