File size: 13,537 Bytes
b585c7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""Agent for working with pandas objects."""
from io import IOBase
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union

from langchain._api import warn_deprecated
from langchain.agents import AgentExecutor, BaseSingleActionAgent
from langchain_experimental.agents.agent_toolkits.pandas.prompt import (
    FUNCTIONS_WITH_DF,
    FUNCTIONS_WITH_MULTI_DF,
    MULTI_DF_PREFIX,
    MULTI_DF_PREFIX_FUNCTIONS,
    PREFIX,
    PREFIX_FUNCTIONS,
    SUFFIX_NO_DF,
    SUFFIX_WITH_DF,
    SUFFIX_WITH_MULTI_DF,
)
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
from langchain.agents.types import AgentType
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import SystemMessage
from langchain.tools import BaseTool
from langchain_experimental.tools.python.tool import PythonAstREPLTool


def _get_multi_prompt(
    dfs: List[Any],
    prefix: Optional[str] = None,
    suffix: Optional[str] = None,
    input_variables: Optional[List[str]] = None,
    include_df_in_prompt: Optional[bool] = True,
    number_of_head_rows: int = 5,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
    num_dfs = len(dfs)
    if suffix is not None:
        suffix_to_use = suffix
        include_dfs_head = True
    elif include_df_in_prompt:
        suffix_to_use = SUFFIX_WITH_MULTI_DF
        include_dfs_head = True
    else:
        suffix_to_use = SUFFIX_NO_DF
        include_dfs_head = False
    if input_variables is None:
        input_variables = ["input", "agent_scratchpad", "num_dfs"]
        if include_dfs_head:
            input_variables += ["dfs_head"]

    if prefix is None:
        prefix = MULTI_DF_PREFIX

    df_locals = {}
    for i, dataframe in enumerate(dfs):
        df_locals[f"df{i + 1}"] = dataframe
    tools = [PythonAstREPLTool(locals=df_locals)]

    prompt = ZeroShotAgent.create_prompt(
        tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables
    )

    partial_prompt = prompt.partial()
    if "dfs_head" in input_variables:
        dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs])
        partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head=dfs_head)
    if "num_dfs" in input_variables:
        partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs))
    return partial_prompt, tools


def _get_single_prompt(
    df: Any,
    prefix: Optional[str] = None,
    suffix: Optional[str] = None,
    input_variables: Optional[List[str]] = None,
    include_df_in_prompt: Optional[bool] = True,
    number_of_head_rows: int = 5,
        format_instructions=FORMAT_INSTRUCTIONS,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
    if suffix is not None:
        suffix_to_use = suffix
        include_df_head = True
    elif include_df_in_prompt:
        suffix_to_use = SUFFIX_WITH_DF
        include_df_head = True
    else:
        suffix_to_use = SUFFIX_NO_DF
        include_df_head = False

    if input_variables is None:
        input_variables = ["input", "agent_scratchpad"]
        if include_df_head:
            input_variables += ["df_head"]

    if prefix is None:
        prefix = PREFIX

    tools = [PythonAstREPLTool(locals={"df": df})]

    prompt = ZeroShotAgent.create_prompt(
        tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables,
        format_instructions=format_instructions,
    )

    partial_prompt = prompt.partial()
    if "df_head" in input_variables:
        partial_prompt = partial_prompt.partial(
            df_head=str(df.head(number_of_head_rows).to_markdown())
        )
    return partial_prompt, tools


def _get_prompt_and_tools(
    df: Any,
    prefix: Optional[str] = None,
    suffix: Optional[str] = None,
    input_variables: Optional[List[str]] = None,
    include_df_in_prompt: Optional[bool] = True,
    number_of_head_rows: int = 5,
        format_instructions=FORMAT_INSTRUCTIONS,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
    try:
        import pandas as pd

        pd.set_option("display.max_columns", None)
    except ImportError:
        raise ImportError(
            "pandas package not found, please install with `pip install pandas`"
        )

    if include_df_in_prompt is not None and suffix is not None:
        raise ValueError("If suffix is specified, include_df_in_prompt should not be.")

    if isinstance(df, list):
        for item in df:
            if not isinstance(item, pd.DataFrame):
                raise ValueError(f"Expected pandas object, got {type(df)}")
        return _get_multi_prompt(
            df,
            prefix=prefix,
            suffix=suffix,
            input_variables=input_variables,
            include_df_in_prompt=include_df_in_prompt,
            number_of_head_rows=number_of_head_rows,
        )
    else:
        if not isinstance(df, pd.DataFrame):
            raise ValueError(f"Expected pandas object, got {type(df)}")
        return _get_single_prompt(
            df,
            prefix=prefix,
            suffix=suffix,
            input_variables=input_variables,
            include_df_in_prompt=include_df_in_prompt,
            number_of_head_rows=number_of_head_rows,
            format_instructions=format_instructions,
        )


def _get_functions_single_prompt(
    df: Any,
    prefix: Optional[str] = None,
    suffix: Optional[str] = None,
    include_df_in_prompt: Optional[bool] = True,
    number_of_head_rows: int = 5,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
    if suffix is not None:
        suffix_to_use = suffix
        if include_df_in_prompt:
            suffix_to_use = suffix_to_use.format(
                df_head=str(df.head(number_of_head_rows).to_markdown())
            )
    elif include_df_in_prompt:
        suffix_to_use = FUNCTIONS_WITH_DF.format(
            df_head=str(df.head(number_of_head_rows).to_markdown())
        )
    else:
        suffix_to_use = ""

    if prefix is None:
        prefix = PREFIX_FUNCTIONS

    tools = [PythonAstREPLTool(locals={"df": df})]
    system_message = SystemMessage(content=prefix + suffix_to_use)
    prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message)
    return prompt, tools


def _get_functions_multi_prompt(
    dfs: Any,
    prefix: Optional[str] = None,
    suffix: Optional[str] = None,
    include_df_in_prompt: Optional[bool] = True,
    number_of_head_rows: int = 5,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
    if suffix is not None:
        suffix_to_use = suffix
        if include_df_in_prompt:
            dfs_head = "\n\n".join(
                [d.head(number_of_head_rows).to_markdown() for d in dfs]
            )
            suffix_to_use = suffix_to_use.format(
                dfs_head=dfs_head,
            )
    elif include_df_in_prompt:
        dfs_head = "\n\n".join([d.head(number_of_head_rows).to_markdown() for d in dfs])
        suffix_to_use = FUNCTIONS_WITH_MULTI_DF.format(
            dfs_head=dfs_head,
        )
    else:
        suffix_to_use = ""

    if prefix is None:
        prefix = MULTI_DF_PREFIX_FUNCTIONS
    prefix = prefix.format(num_dfs=str(len(dfs)))

    df_locals = {}
    for i, dataframe in enumerate(dfs):
        df_locals[f"df{i + 1}"] = dataframe
    tools = [PythonAstREPLTool(locals=df_locals)]
    system_message = SystemMessage(content=prefix + suffix_to_use)
    prompt = OpenAIFunctionsAgent.create_prompt(system_message=system_message)
    return prompt, tools


def _get_functions_prompt_and_tools(
    df: Any,
    prefix: Optional[str] = None,
    suffix: Optional[str] = None,
    input_variables: Optional[List[str]] = None,
    include_df_in_prompt: Optional[bool] = True,
    number_of_head_rows: int = 5,
) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]:
    try:
        import pandas as pd

        pd.set_option("display.max_columns", None)
    except ImportError:
        raise ImportError(
            "pandas package not found, please install with `pip install pandas`"
        )
    if input_variables is not None:
        raise ValueError("`input_variables` is not supported at the moment.")

    if include_df_in_prompt is not None and suffix is not None:
        raise ValueError("If suffix is specified, include_df_in_prompt should not be.")

    if isinstance(df, list):
        for item in df:
            if not isinstance(item, pd.DataFrame):
                raise ValueError(f"Expected pandas object, got {type(df)}")
        return _get_functions_multi_prompt(
            df,
            prefix=prefix,
            suffix=suffix,
            include_df_in_prompt=include_df_in_prompt,
            number_of_head_rows=number_of_head_rows,
        )
    else:
        if not isinstance(df, pd.DataFrame):
            raise ValueError(f"Expected pandas object, got {type(df)}")
        return _get_functions_single_prompt(
            df,
            prefix=prefix,
            suffix=suffix,
            include_df_in_prompt=include_df_in_prompt,
            number_of_head_rows=number_of_head_rows,
        )




def create_pandas_dataframe_agent(
    llm: BaseLanguageModel,
    df: Any,
    agent_type: AgentType = AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    callback_manager: Optional[BaseCallbackManager] = None,
    prefix: Optional[str] = None,
    suffix: Optional[str] = None,
    input_variables: Optional[List[str]] = None,
    verbose: bool = False,
    return_intermediate_steps: bool = False,
    max_iterations: Optional[int] = 15,
    max_execution_time: Optional[float] = None,
    early_stopping_method: str = "force",
    agent_executor_kwargs: Optional[Dict[str, Any]] = None,
    include_df_in_prompt: Optional[bool] = True,
    number_of_head_rows: int = 5,
    extra_tools: Sequence[BaseTool] = (),
        format_instructions="",
    **kwargs: Any,
) -> AgentExecutor:
    """Construct a pandas agent from an LLM and dataframe."""
    warn_deprecated(
        since="0.0.314",
        message=(
            "On 2023-10-27 this module will be be deprecated from langchain, and "
            "will be available from the langchain-experimental package."
            "This code is already available in langchain-experimental."
            "See https://github.com/langchain-ai/langchain/discussions/11680."
        ),
        pending=True,
    )
    agent: BaseSingleActionAgent
    if agent_type == AgentType.ZERO_SHOT_REACT_DESCRIPTION:
        prompt, base_tools = _get_prompt_and_tools(
            df,
            prefix=prefix,
            suffix=suffix,
            input_variables=input_variables,
            include_df_in_prompt=include_df_in_prompt,
            number_of_head_rows=number_of_head_rows,
            format_instructions=format_instructions,
        )
        tools = base_tools + list(extra_tools)
        llm_chain = LLMChain(
            llm=llm,
            prompt=prompt,
            callback_manager=callback_manager,
        )
        tool_names = [tool.name for tool in tools]
        agent = ZeroShotAgent(
            llm_chain=llm_chain,
            allowed_tools=tool_names,
            callback_manager=callback_manager,
            **kwargs,
        )
    elif agent_type == AgentType.OPENAI_FUNCTIONS:
        _prompt, base_tools = _get_functions_prompt_and_tools(
            df,
            prefix=prefix,
            suffix=suffix,
            input_variables=input_variables,
            include_df_in_prompt=include_df_in_prompt,
            number_of_head_rows=number_of_head_rows,
        )
        tools = base_tools + list(extra_tools)
        agent = OpenAIFunctionsAgent(
            llm=llm,
            prompt=_prompt,
            tools=tools,
            callback_manager=callback_manager,
            **kwargs,
        )
    else:
        raise ValueError(f"Agent type {agent_type} not supported at the moment.")
    return AgentExecutor.from_agent_and_tools(
        agent=agent,
        tools=tools,
        callback_manager=callback_manager,
        verbose=verbose,
        return_intermediate_steps=return_intermediate_steps,
        max_iterations=max_iterations,
        max_execution_time=max_execution_time,
        early_stopping_method=early_stopping_method,
        **(agent_executor_kwargs or {}),
    )


def create_csv_agent(
    llm: BaseLanguageModel,
    path: Union[str, IOBase, List[Union[str, IOBase]]],
    pandas_kwargs: Optional[dict] = None,
    **kwargs: Any,
) -> AgentExecutor:
    """Create csv agent by loading to a dataframe and using pandas agent."""
    try:
        import pandas as pd
    except ImportError:
        raise ImportError(
            "pandas package not found, please install with `pip install pandas`"
        )

    _kwargs = pandas_kwargs or {}
    if isinstance(path, (str, IOBase)):
        df = pd.read_csv(path, **_kwargs)
    elif isinstance(path, list):
        df = []
        for item in path:
            if not isinstance(item, (str, IOBase)):
                raise ValueError(f"Expected str or file-like object, got {type(path)}")
            df.append(pd.read_csv(item, **_kwargs))
    else:
        raise ValueError(f"Expected str, list, or file-like object, got {type(path)}")
    return create_pandas_dataframe_agent(llm, df, **kwargs)