|
import os |
|
import subprocess |
|
import time |
|
from datetime import datetime |
|
import pytest |
|
|
|
from src.utils import get_ngpus_vis, makedirs |
|
from tests.utils import wrap_test_forked, get_inf_port, get_inf_server |
|
from tests.test_langchain_units import have_openai_key, have_replicate_key |
|
from src.client_test import run_client_many, test_client_basic_api_lean |
|
from src.enums import PromptType, LangChainAction |
|
|
|
|
|
@pytest.mark.parametrize("base_model", |
|
['h2oai/h2ogpt-oig-oasst1-512-6_9b', |
|
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', |
|
'llama', 'gptj'] |
|
) |
|
@pytest.mark.parametrize("force_langchain_evaluate", [False, True]) |
|
@pytest.mark.parametrize("do_langchain", [False, True]) |
|
@pytest.mark.parametrize("enforce_h2ogpt_api_key", [False, True]) |
|
@pytest.mark.parametrize("enforce_h2ogpt_ui_key", [False, True]) |
|
@wrap_test_forked |
|
def test_gradio_inference_server(base_model, force_langchain_evaluate, do_langchain, |
|
enforce_h2ogpt_ui_key, enforce_h2ogpt_api_key, |
|
prompt='Who are you?', stream_output=False, max_new_tokens=256, |
|
langchain_mode='Disabled', langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
user_path=None, |
|
langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], |
|
docs_ordering_type='reverse_sort'): |
|
if enforce_h2ogpt_api_key and base_model != 'h2oai/h2ogpt-oig-oasst1-512-6_9b': |
|
|
|
return |
|
if force_langchain_evaluate: |
|
langchain_mode = 'MyData' |
|
if do_langchain: |
|
langchain_mode = 'UserData' |
|
from tests.utils import make_user_path_test |
|
user_path = make_user_path_test() |
|
|
|
|
|
|
|
max_seq_len_client = None |
|
if base_model in ['h2oai/h2ogpt-oig-oasst1-512-6_9b', 'h2oai/h2ogpt-oasst1-512-12b']: |
|
prompt_type = PromptType.human_bot.name |
|
elif base_model in ['h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2']: |
|
prompt_type = PromptType.prompt_answer.name |
|
elif base_model in ['llama']: |
|
max_seq_len_client = 2048 |
|
prompt_type = PromptType.llama2.name |
|
elif base_model in ['gptj']: |
|
max_seq_len_client = 2048 |
|
prompt_type = PromptType.gptj.name |
|
else: |
|
raise NotImplementedError(base_model) |
|
|
|
main_kwargs = dict(base_model=base_model, prompt_type=prompt_type, chat=True, |
|
stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, |
|
max_new_tokens=max_new_tokens, |
|
langchain_mode=langchain_mode, langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
user_path=user_path, |
|
langchain_modes=langchain_modes, |
|
docs_ordering_type=docs_ordering_type, |
|
force_langchain_evaluate=force_langchain_evaluate, |
|
system_prompt='', |
|
verbose=True) |
|
|
|
|
|
from src.gen import main |
|
main(**main_kwargs) |
|
inference_server = get_inf_server() |
|
inf_port = get_inf_port() |
|
|
|
|
|
from src.gen import main |
|
client_port = inf_port + 2 |
|
|
|
os.environ['GRADIO_SERVER_PORT'] = str(client_port) |
|
os.environ['HOST'] = "http://127.0.0.1:%s" % client_port |
|
|
|
h2ogpt_key = 'foodoo#' |
|
main_kwargs = main_kwargs.copy() |
|
if enforce_h2ogpt_api_key: |
|
main_kwargs.update(dict(enforce_h2ogpt_api_key=True, h2ogpt_api_keys=[h2ogpt_key])) |
|
main_kwargs.update(dict(max_seq_len=max_seq_len_client)) |
|
main(**main_kwargs, inference_server=inference_server) |
|
|
|
|
|
from src.client_test import run_client_chat |
|
res_dict, client = run_client_chat(prompt=prompt, prompt_type=prompt_type, stream_output=stream_output, |
|
max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, langchain_agents=langchain_agents) |
|
assert res_dict['prompt'] == prompt |
|
assert res_dict['iinput'] == '' |
|
|
|
|
|
if enforce_h2ogpt_api_key: |
|
|
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) |
|
assert 'Invalid Access Key' in ret1['response'] |
|
assert 'Invalid Access Key' in ret2['response'] |
|
assert 'Invalid Access Key' in ret3['response'] |
|
assert 'Invalid Access Key' in ret4['response'] |
|
assert 'Invalid Access Key' in ret5['response'] |
|
assert 'Invalid Access Key' in ret6['response'] |
|
assert 'Invalid Access Key' in ret7['response'] |
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, h2ogpt_key='foo') |
|
assert 'Invalid Access Key' in ret1['response'] |
|
assert 'Invalid Access Key' in ret2['response'] |
|
assert 'Invalid Access Key' in ret3['response'] |
|
assert 'Invalid Access Key' in ret4['response'] |
|
assert 'Invalid Access Key' in ret5['response'] |
|
assert 'Invalid Access Key' in ret6['response'] |
|
assert 'Invalid Access Key' in ret7['response'] |
|
|
|
|
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, |
|
h2ogpt_key=h2ogpt_key) |
|
if base_model == 'h2oai/h2ogpt-oig-oasst1-512-6_9b': |
|
assert 'h2oGPT' in ret1['response'] |
|
assert 'Birds' in ret2['response'] |
|
assert 'Birds' in ret3['response'] |
|
assert 'h2oGPT' in ret4['response'] |
|
assert 'h2oGPT' in ret5['response'] |
|
assert 'h2oGPT' in ret6['response'] |
|
assert 'h2oGPT' in ret7['response'] |
|
elif base_model == 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2': |
|
assert 'I am a language model trained' in ret1['response'] or \ |
|
'I am a helpful assistant' in ret1['response'] or \ |
|
'I am a chatbot.' in ret1['response'] or \ |
|
'a chat-based assistant that can answer questions' in ret1['response'] or \ |
|
'I am an AI language model' in ret1['response'] or \ |
|
'I am an AI assistant.' in ret1['response'] |
|
assert 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time' in ret3['response'] |
|
assert 'I am a language model trained' in ret4['response'] or 'I am a helpful assistant' in \ |
|
ret4['response'] or 'I am a chatbot.' in ret4['response'] or \ |
|
'a chat-based assistant that can answer questions' in ret4['response'] or \ |
|
'I am an AI language model' in ret4['response'] or \ |
|
'I am an AI assistant.' in ret4['response'] |
|
assert 'I am a language model trained' in ret5['response'] or 'I am a helpful assistant' in \ |
|
ret5['response'] or 'I am a chatbot.' in ret5['response'] or \ |
|
'a chat-based assistant that can answer questions' in ret5['response'] or \ |
|
'I am an AI language model' in ret5['response'] or \ |
|
'I am an AI assistant.' in ret5['response'] |
|
assert 'I am a language model trained' in ret6['response'] or 'I am a helpful assistant' in \ |
|
ret6['response'] or 'I am a chatbot.' in ret6['response'] or \ |
|
'a chat-based assistant that can answer questions' in ret6['response'] or \ |
|
'I am an AI language model' in ret6['response'] or \ |
|
'I am an AI assistant.' in ret6['response'] |
|
assert 'I am a language model trained' in ret7['response'] or 'I am a helpful assistant' in \ |
|
ret7['response'] or 'I am a chatbot.' in ret7['response'] or \ |
|
'a chat-based assistant that can answer questions' in ret7['response'] or \ |
|
'I am an AI language model' in ret7['response'] or \ |
|
'I am an AI assistant.' in ret7['response'] |
|
elif base_model == 'llama': |
|
assert 'I am a bot.' in ret1['response'] or 'can I assist you today?' in ret1[ |
|
'response'] or 'How can I assist you?' in ret1['response'] or "I'm LLaMA" in ret1['response'] |
|
assert 'Birds' in ret2['response'] or 'Once upon a time' in ret2['response'] |
|
assert 'Birds' in ret3['response'] or 'Once upon a time' in ret3['response'] |
|
assert 'I am a bot.' in ret4['response'] or 'can I assist you today?' in ret4[ |
|
'response'] or 'How can I assist you?' in ret4['response'] or "I'm LLaMA" in ret4['response'] |
|
assert 'I am a bot.' in ret5['response'] or 'can I assist you today?' in ret5[ |
|
'response'] or 'How can I assist you?' in ret5['response'] or "I'm LLaMA" in ret5['response'] |
|
assert 'I am a bot.' in ret6['response'] or 'can I assist you today?' in ret6[ |
|
'response'] or 'How can I assist you?' in ret6['response'] or "I'm LLaMA" in ret6['response'] |
|
assert 'I am a bot.' in ret7['response'] or 'can I assist you today?' in ret7[ |
|
'response'] or 'How can I assist you?' in ret7['response'] or "I'm LLaMA" in ret7['response'] |
|
elif base_model == 'gptj': |
|
assert 'I am a bot.' in ret1['response'] or 'can I assist you today?' in ret1[ |
|
'response'] or 'a student at' in ret1['response'] or 'am a person who' in ret1['response'] or 'I am' in \ |
|
ret1['response'] or "I'm a student at" in ret1['response'] |
|
assert 'Birds' in ret2['response'] or 'Once upon a time' in ret2['response'] |
|
assert 'Birds' in ret3['response'] or 'Once upon a time' in ret3['response'] |
|
assert 'I am a bot.' in ret4['response'] or 'can I assist you today?' in ret4[ |
|
'response'] or 'a student at' in ret4['response'] or 'am a person who' in ret4['response'] or 'I am' in \ |
|
ret4['response'] or "I'm a student at" in ret4['response'] |
|
assert 'I am a bot.' in ret5['response'] or 'can I assist you today?' in ret5[ |
|
'response'] or 'a student at' in ret5['response'] or 'am a person who' in ret5['response'] or 'I am' in \ |
|
ret5['response'] or "I'm a student at" in ret5['response'] |
|
assert 'I am a bot.' in ret6['response'] or 'can I assist you today?' in ret6[ |
|
'response'] or 'a student at' in ret6['response'] or 'am a person who' in ret6['response'] or 'I am' in \ |
|
ret6['response'] or "I'm a student at" in ret6['response'] |
|
assert 'I am a bot.' in ret7['response'] or 'can I assist you today?' in ret7[ |
|
'response'] or 'a student at' in ret7['response'] or 'am a person who' in ret7['response'] or 'I am' in \ |
|
ret7['response'] or "I'm a student at" in ret7['response'] |
|
print("DONE", flush=True) |
|
|
|
|
|
def run_docker(inf_port, base_model, low_mem_mode=False, do_shared=True): |
|
datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") |
|
msg = "Starting HF inference %s..." % datetime_str |
|
print(msg, flush=True) |
|
home_dir = os.path.expanduser('~') |
|
makedirs(os.path.join(home_dir, '.cache/huggingface/hub')) |
|
data_dir = '%s/.cache/huggingface/hub/' % home_dir |
|
n_gpus = get_ngpus_vis() |
|
cmd = ["docker"] + ['run', |
|
'-d', |
|
'--runtime', 'nvidia', |
|
] + gpus_cmd() + [ |
|
'--shm-size', '1g', |
|
'-e', 'HUGGING_FACE_HUB_TOKEN=%s' % os.environ['HUGGING_FACE_HUB_TOKEN'], |
|
'-p', '%s:80' % inf_port, |
|
'-v', '%s/.cache/huggingface/hub/:/data' % home_dir, |
|
'-v', '%s:/data' % data_dir, |
|
'ghcr.io/huggingface/text-generation-inference:0.9.3', |
|
'--model-id', base_model, |
|
'--max-stop-sequences', '6', |
|
'--sharded', 'false' if n_gpus == 1 or not do_shared else 'true' |
|
] |
|
if n_gpus > 1 and do_shared: |
|
cmd.extend(['--num-shard', '%s' % n_gpus]) |
|
if low_mem_mode: |
|
cmd.extend(['--max-input-length', '1024', |
|
'--max-total-tokens', '2048', |
|
|
|
]) |
|
else: |
|
cmd.extend(['--max-input-length', '4096', |
|
'--max-total-tokens', '8192', |
|
|
|
]) |
|
|
|
print(cmd, flush=True) |
|
docker_hash = subprocess.check_output(cmd).decode().strip() |
|
import time |
|
connected = False |
|
while not connected: |
|
cmd = 'docker logs %s' % docker_hash |
|
o = subprocess.check_output(cmd, shell=True, timeout=15) |
|
connected = 'Connected' in o.decode("utf-8") |
|
time.sleep(5) |
|
print("Done starting TGI server: %s" % docker_hash, flush=True) |
|
return docker_hash |
|
|
|
|
|
def gpus_cmd(): |
|
n_gpus = get_ngpus_vis() |
|
if n_gpus == 1: |
|
return ['--gpus', 'device=%d' % int(os.getenv('CUDA_VISIBLE_DEVICES', '0'))] |
|
elif n_gpus > 2: |
|
|
|
return ['--gpus', '\"device=%s\"' % os.getenv('CUDA_VISIBLE_DEVICES', |
|
str(list(range(0, n_gpus))).replace(']', '').replace('[', |
|
'').replace( |
|
' ', '') |
|
)] |
|
|
|
|
|
def run_vllm_docker(inf_port, base_model, tokenizer=None): |
|
if base_model == 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2': |
|
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
|
os.system("docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0") |
|
datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") |
|
msg = "Starting vLLM inference %s..." % datetime_str |
|
print(msg, flush=True) |
|
home_dir = os.path.expanduser('~') |
|
makedirs(os.path.join(home_dir, '.cache/huggingface/hub')) |
|
n_gpus = get_ngpus_vis() |
|
cmd = ["docker"] + ['run', |
|
'-d', |
|
'--runtime', 'nvidia', |
|
] + gpus_cmd() + [ |
|
'--shm-size', '10.24g', |
|
'-e', 'HUGGING_FACE_HUB_TOKEN=%s' % os.environ['HUGGING_FACE_HUB_TOKEN'], |
|
'-p', '%s:5000' % inf_port, |
|
'--entrypoint', '/h2ogpt_conda/vllm_env/bin/python3.10', |
|
'-e', 'NCCL_IGNORE_DISABLED_P2P=1', |
|
'-v', '/etc/passwd:/etc/passwd:ro', |
|
'-v', '/etc/group:/etc/group:ro', |
|
'-u', '%s:%s' % (os.getuid(), os.getgid()), |
|
'-v', '%s/.cache:/workspace/.cache' % home_dir, |
|
|
|
'gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0', |
|
|
|
|
|
'-m', 'vllm.entrypoints.openai.api_server', |
|
'--port=5000', |
|
'--host=0.0.0.0', |
|
'--model=%s' % base_model, |
|
'--tensor-parallel-size=%s' % n_gpus, |
|
'--seed', '1234', |
|
'--trust-remote-code', |
|
'--download-dir=/workspace/.cache/huggingface/hub', |
|
] |
|
os.environ.pop('CUDA_VISIBLE_DEVICES', None) |
|
if tokenizer: |
|
cmd.append('--tokenizer=%s' % tokenizer) |
|
|
|
print(cmd, flush=True) |
|
print(' '.join(cmd), flush=True) |
|
docker_hash = subprocess.check_output(cmd).decode().strip() |
|
import time |
|
connected = False |
|
while not connected: |
|
cmd = 'docker logs %s' % docker_hash |
|
o = subprocess.check_output(cmd, shell=True, timeout=15) |
|
connected = 'Uvicorn running on' in o.decode("utf-8") |
|
|
|
connected |= 'GPU blocks' in o.decode("utf-8") |
|
time.sleep(5) |
|
print("Done starting vLLM server: %s" % docker_hash, flush=True) |
|
return docker_hash |
|
|
|
|
|
def run_h2ogpt_docker(port, base_model, inference_server=None, max_new_tokens=None): |
|
os.system("docker pull gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0") |
|
datetime_str = str(datetime.now()).replace(" ", "_").replace(":", "_") |
|
msg = "Starting h2oGPT %s..." % datetime_str |
|
print(msg, flush=True) |
|
home_dir = os.path.expanduser('~') |
|
makedirs(os.path.join(home_dir, '.cache/huggingface/hub')) |
|
makedirs(os.path.join(home_dir, 'save')) |
|
cmd = ["docker"] + ['run', |
|
'-d', |
|
'--runtime', 'nvidia', |
|
] + gpus_cmd() + [ |
|
'--shm-size', '1g', |
|
'-p', '%s:7860' % port, |
|
'-v', '%s/.cache:/workspace/.cache/' % home_dir, |
|
'-v', '%s/save:/workspace/save' % home_dir, |
|
'-v', '/etc/passwd:/etc/passwd:ro', |
|
'-v', '/etc/group:/etc/group:ro', |
|
'-u', '%s:%s' % (os.getuid(), os.getgid()), |
|
'-e', 'HUGGING_FACE_HUB_TOKEN=%s' % os.environ['HUGGING_FACE_HUB_TOKEN'], |
|
'--network', 'host', |
|
'gcr.io/vorvan/h2oai/h2ogpt-runtime:0.1.0', |
|
|
|
'/workspace/generate.py', |
|
'--base_model=%s' % base_model, |
|
'--use_safetensors=True', |
|
'--save_dir=/workspace/save/', |
|
'--score_model=None', |
|
'--max_max_new_tokens=%s' % (max_new_tokens or 2048), |
|
'--max_new_tokens=%s' % (max_new_tokens or 1024), |
|
'--num_async=10', |
|
'--num_beams=1', |
|
'--top_k_docs=-1', |
|
'--chat=True', |
|
'--stream_output=True', |
|
|
|
] |
|
|
|
if inference_server: |
|
cmd.extend(['--inference_server=%s' % inference_server]) |
|
|
|
print(cmd, flush=True) |
|
docker_hash = subprocess.check_output(cmd).decode().strip() |
|
print("Done starting h2oGPT server: %s" % docker_hash, flush=True) |
|
return docker_hash |
|
|
|
|
|
@pytest.mark.parametrize("base_model", |
|
|
|
|
|
['h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2'] |
|
) |
|
@pytest.mark.parametrize("force_langchain_evaluate", [False, True]) |
|
@pytest.mark.parametrize("do_langchain", [False, True]) |
|
@pytest.mark.parametrize("pass_prompt_type", [False, True, 'custom']) |
|
@pytest.mark.parametrize("do_model_lock", [False, True]) |
|
@wrap_test_forked |
|
def test_hf_inference_server(base_model, force_langchain_evaluate, do_langchain, pass_prompt_type, do_model_lock, |
|
prompt='Who are you?', stream_output=False, max_new_tokens=256, |
|
langchain_mode='Disabled', |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
user_path=None, |
|
langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], |
|
docs_ordering_type='reverse_sort'): |
|
|
|
gradio_port = get_inf_port() |
|
inf_port = gradio_port + 1 |
|
inference_server = 'http://127.0.0.1:%s' % inf_port |
|
docker_hash = run_docker(inf_port, base_model, low_mem_mode=True, do_shared=False) |
|
|
|
if force_langchain_evaluate: |
|
langchain_mode = 'MyData' |
|
if do_langchain: |
|
langchain_mode = 'UserData' |
|
from tests.utils import make_user_path_test |
|
user_path = make_user_path_test() |
|
|
|
|
|
|
|
if base_model in ['h2oai/h2ogpt-oig-oasst1-512-6_9b', 'h2oai/h2ogpt-oasst1-512-12b']: |
|
prompt_type = PromptType.human_bot.name |
|
else: |
|
prompt_type = PromptType.prompt_answer.name |
|
if isinstance(pass_prompt_type, str): |
|
prompt_type = 'custom' |
|
prompt_dict = """{'promptA': None, 'promptB': None, 'PreInstruct': None, 'PreInput': None, 'PreResponse': None, 'terminate_response': [], 'chat_sep': '', 'chat_turn_sep': '', 'humanstr': None, 'botstr': None, 'generates_leading_space': False}""" |
|
else: |
|
prompt_dict = None |
|
if not pass_prompt_type: |
|
prompt_type = None |
|
if do_model_lock: |
|
model_lock = [{'inference_server': inference_server, 'base_model': base_model}] |
|
base_model = None |
|
inference_server = None |
|
else: |
|
model_lock = None |
|
main_kwargs = dict(base_model=base_model, |
|
prompt_type=prompt_type, |
|
prompt_dict=prompt_dict, |
|
chat=True, |
|
system_prompt='', |
|
stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, |
|
max_new_tokens=max_new_tokens, |
|
langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
user_path=user_path, |
|
langchain_modes=langchain_modes, |
|
docs_ordering_type=docs_ordering_type, |
|
force_langchain_evaluate=force_langchain_evaluate, |
|
inference_server=inference_server, |
|
model_lock=model_lock) |
|
|
|
try: |
|
|
|
from src.gen import main |
|
main(**main_kwargs) |
|
|
|
|
|
from src.client_test import run_client_chat |
|
res_dict, client = run_client_chat(prompt=prompt, prompt_type=prompt_type, |
|
stream_output=stream_output, |
|
max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
prompt_dict=prompt_dict) |
|
assert res_dict['prompt'] == prompt |
|
assert res_dict['iinput'] == '' |
|
|
|
|
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) |
|
|
|
|
|
if isinstance(pass_prompt_type, str): |
|
assert 'year old student from the' in ret1['response'] or 'I am a person who is asking you a question' in \ |
|
ret1['response'] or 'year old' in ret1['response'] |
|
assert 'bird' in ret2['response'] |
|
assert 'bird' in ret3['response'] |
|
assert 'year old student from the' in ret4['response'] or 'I am a person who is asking you a question' in \ |
|
ret4['response'] or 'year old' in ret4['response'] |
|
assert 'year old student from the' in ret5['response'] or 'I am a person who is asking you a question' in \ |
|
ret5['response'] or 'year old' in ret5['response'] |
|
assert 'year old student from the' in ret6['response'] or 'I am a person who is asking you a question' in \ |
|
ret6['response'] or 'year old' in ret6['response'] |
|
assert 'year old student from the' in ret7['response'] or 'I am a person who is asking you a question' in \ |
|
ret7['response'] or 'year old' in ret7['response'] |
|
elif base_model == 'h2oai/h2ogpt-oig-oasst1-512-6_9b': |
|
assert 'h2oGPT' in ret1['response'] |
|
assert 'Birds' in ret2['response'] |
|
assert 'Birds' in ret3['response'] |
|
assert 'h2oGPT' in ret4['response'] |
|
assert 'h2oGPT' in ret5['response'] |
|
assert 'h2oGPT' in ret6['response'] |
|
assert 'h2oGPT' in ret7['response'] |
|
else: |
|
assert 'I am a language model trained' in ret1['response'] or 'I am a helpful assistant' in \ |
|
ret1['response'] or 'a chat-based assistant' in ret1['response'] or 'am a student' in ret1[ |
|
'response'] or 'I am an AI language model' in ret1['response'] |
|
assert 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time' in ret3['response'] |
|
assert 'I am a language model trained' in ret4['response'] or 'I am a helpful assistant' in \ |
|
ret4['response'] or 'a chat-based assistant' in ret4['response'] or 'am a student' in ret4[ |
|
'response'] or 'I am an AI language model' in ret4['response'] |
|
assert 'I am a language model trained' in ret5['response'] or 'I am a helpful assistant' in \ |
|
ret5['response'] or 'a chat-based assistant' in ret5['response'] or 'am a student' in ret5[ |
|
'response'] or 'I am an AI language model' in ret5['response'] |
|
assert 'I am a language model trained' in ret6['response'] or 'I am a helpful assistant' in \ |
|
ret6['response'] or 'a chat-based assistant' in ret6['response'] or 'am a student' in ret6[ |
|
'response'] or 'I am an AI language model' in ret6['response'] |
|
assert 'I am a language model trained' in ret7['response'] or 'I am a helpful assistant' in \ |
|
ret7['response'] or 'a chat-based assistant' in ret7['response'] or 'am a student' in ret7[ |
|
'response'] or 'I am an AI language model' in ret7['response'] |
|
print("DONE", flush=True) |
|
finally: |
|
os.system("docker stop %s" % docker_hash) |
|
|
|
|
|
chat_conversation1 = [['Who are you?', |
|
'I am an AI language model created by OpenAI, designed to assist with various tasks such as answering questions, generating text, and providing information.']] |
|
|
|
|
|
@pytest.mark.skipif(not have_openai_key, reason="requires OpenAI key to run") |
|
@pytest.mark.parametrize("system_prompt", ['You are a baby cat who likes to talk to people.', '']) |
|
@pytest.mark.parametrize("chat_conversation", [chat_conversation1, []]) |
|
@pytest.mark.parametrize("force_langchain_evaluate", [False, True]) |
|
@pytest.mark.parametrize("inference_server", ['openai_chat', 'openai_azure_chat']) |
|
@wrap_test_forked |
|
def test_openai_inference_server(inference_server, force_langchain_evaluate, chat_conversation, |
|
system_prompt, |
|
prompt='Who are you?', stream_output=False, max_new_tokens=256, |
|
base_model='gpt-3.5-turbo', |
|
langchain_mode='Disabled', |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
user_path=None, |
|
langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], |
|
docs_ordering_type='reverse_sort'): |
|
if force_langchain_evaluate: |
|
langchain_mode = 'MyData' |
|
if inference_server == 'openai_azure_chat': |
|
|
|
deployment_name = 'h2ogpt' |
|
inference_server += ':%s:%s' % (deployment_name, 'h2ogpt.openai.azure.com/') |
|
if 'azure' in inference_server: |
|
assert 'OPENAI_AZURE_KEY' in os.environ, "Missing 'OPENAI_AZURE_KEY'" |
|
os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_AZURE_KEY'] |
|
|
|
main_kwargs = dict(base_model=base_model, chat=True, |
|
stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, |
|
max_new_tokens=max_new_tokens, |
|
langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
user_path=user_path, |
|
langchain_modes=langchain_modes, |
|
system_prompt='auto', |
|
docs_ordering_type=docs_ordering_type, |
|
|
|
) |
|
|
|
|
|
from src.gen import main |
|
main(**main_kwargs, inference_server=inference_server) |
|
|
|
if chat_conversation: |
|
prompt = 'What did I ask?' |
|
|
|
|
|
from src.client_test import run_client_chat |
|
res_dict, client = run_client_chat(prompt=prompt, prompt_type='openai_chat', stream_output=stream_output, |
|
max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, langchain_agents=langchain_agents, |
|
chat_conversation=chat_conversation, |
|
system_prompt=system_prompt) |
|
assert res_dict['prompt'] == prompt |
|
assert res_dict['iinput'] == '' |
|
|
|
if chat_conversation and system_prompt: |
|
|
|
return |
|
|
|
if chat_conversation or system_prompt: |
|
ret6, _ = test_client_basic_api_lean(prompt=prompt, prompt_type=None, |
|
chat_conversation=chat_conversation, |
|
system_prompt=system_prompt) |
|
if system_prompt: |
|
assert 'baby cat' in res_dict['response'] and 'meow' in res_dict['response'].lower() |
|
assert 'baby cat' in ret6['response'] and 'meow' in ret6['response'].lower() |
|
else: |
|
options_response = ['You asked "Who are you?"', """You asked, \"Who are you?\""""] |
|
assert res_dict['response'] in options_response |
|
assert ret6['response'] in options_response |
|
|
|
return |
|
|
|
if system_prompt: |
|
|
|
return |
|
|
|
|
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) |
|
assert 'I am an AI language model' in ret1['response'] or 'I am a helpful assistant designed' in ret1[ |
|
'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret1[ |
|
'response'] |
|
assert 'Once upon a time, in a far-off land,' in ret2['response'] or 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time, in a far-off land,' in ret3['response'] or 'Once upon a time' in ret3['response'] |
|
assert 'I am an AI language model' in ret4['response'] or 'I am a helpful assistant designed' in ret4[ |
|
'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret4[ |
|
'response'] |
|
assert 'I am an AI language model' in ret5['response'] or 'I am a helpful assistant designed' in ret5[ |
|
'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret5[ |
|
'response'] |
|
assert 'I am an AI language model' in ret6['response'] or 'I am a helpful assistant designed' in ret6[ |
|
'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret6[ |
|
'response'] |
|
assert 'I am an AI language model' in ret7['response'] or 'I am a helpful assistant designed' in ret7[ |
|
'response'] or 'I am an AI assistant designed to help answer questions and provide information' in ret7[ |
|
'response'] |
|
print("DONE", flush=True) |
|
|
|
|
|
@pytest.mark.parametrize("base_model", |
|
['h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', 'meta-llama/Llama-2-7b-chat-hf'] |
|
) |
|
@wrap_test_forked |
|
def test_gradio_tgi_docker(base_model): |
|
|
|
gradio_port = get_inf_port() |
|
inf_port = gradio_port + 1 |
|
inference_server = 'http://127.0.0.1:%s' % inf_port |
|
docker_hash1 = run_docker(inf_port, base_model, low_mem_mode=True, do_shared=False) |
|
os.system('docker logs %s | tail -10' % docker_hash1) |
|
|
|
|
|
docker_hash2 = run_h2ogpt_docker(gradio_port, base_model, inference_server=inference_server) |
|
time.sleep(30) |
|
os.system('docker logs %s | tail -10' % docker_hash2) |
|
|
|
|
|
version = 1 |
|
|
|
try: |
|
|
|
prompt = 'Who are you?' |
|
print("Starting client tests with prompt: %s using %s" % (prompt, get_inf_server())) |
|
from src.client_test import run_client_chat |
|
res_dict, client = run_client_chat(prompt=prompt, |
|
stream_output=True, |
|
max_new_tokens=256, |
|
langchain_mode='Disabled', |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
version=version) |
|
assert res_dict['prompt'] == prompt |
|
assert res_dict['iinput'] == '' |
|
|
|
|
|
|
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, version=version) |
|
if 'llama' in base_model.lower(): |
|
who = "I'm LLaMA, an AI assistant developed by Meta AI" |
|
assert who in ret1['response'] |
|
assert who in ret1['response'] |
|
assert 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time' in ret3['response'] |
|
assert who in ret4['response'] |
|
assert who in ret5['response'] |
|
assert who in ret6['response'] |
|
assert who in ret7['response'] |
|
else: |
|
who = 'I am an AI language model' |
|
assert who in ret1['response'] |
|
assert 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time' in ret3['response'] |
|
assert who in ret4['response'] |
|
assert who in ret5['response'] |
|
assert who in ret6['response'] |
|
assert who in ret7['response'] |
|
print("DONE", flush=True) |
|
finally: |
|
os.system("docker stop %s" % docker_hash1) |
|
os.system("docker stop %s" % docker_hash2) |
|
|
|
|
|
@pytest.mark.parametrize("base_model", |
|
[ |
|
'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v2', |
|
'h2oai/h2ogpt-4096-llama2-7b-chat'] |
|
) |
|
@wrap_test_forked |
|
def test_gradio_vllm_docker(base_model): |
|
|
|
gradio_port = get_inf_port() |
|
inf_port = gradio_port + 1 |
|
inference_server = 'vllm:127.0.0.1:%s' % inf_port |
|
if 'llama' in base_model: |
|
tokenizer = 'hf-internal-testing/llama-tokenizer' |
|
else: |
|
tokenizer = None |
|
|
|
docker_hash1 = run_vllm_docker(inf_port, base_model, tokenizer) |
|
os.system('docker logs %s | tail -10' % docker_hash1) |
|
|
|
|
|
docker_hash2 = run_h2ogpt_docker(gradio_port, base_model, inference_server=inference_server) |
|
time.sleep(30) |
|
os.system('docker logs %s | tail -10' % docker_hash2) |
|
|
|
|
|
version = 1 |
|
|
|
try: |
|
|
|
prompt = 'Who are you?' |
|
print("Starting client tests with prompt: %s using %s" % (prompt, get_inf_server())) |
|
from src.client_test import run_client_chat |
|
res_dict, client = run_client_chat(prompt=prompt, |
|
stream_output=True, |
|
max_new_tokens=256, |
|
langchain_mode='Disabled', |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
version=version) |
|
assert res_dict['prompt'] == prompt |
|
assert res_dict['iinput'] == '' |
|
|
|
|
|
|
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None, version=version) |
|
if 'llama' in base_model.lower(): |
|
who = "I'm LLaMA, an AI assistant developed by Meta AI" |
|
assert who in ret1['response'] |
|
assert who in ret1['response'] |
|
assert 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time' in ret3['response'] |
|
assert who in ret4['response'] |
|
assert who in ret5['response'] |
|
assert who in ret6['response'] |
|
assert who in ret7['response'] |
|
else: |
|
who = 'I am an AI language model' |
|
assert who in ret1['response'] |
|
assert 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time' in ret3['response'] |
|
assert who in ret4['response'] |
|
assert who in ret5['response'] |
|
assert who in ret6['response'] |
|
assert who in ret7['response'] |
|
print("DONE", flush=True) |
|
finally: |
|
os.system("docker stop %s" % docker_hash1) |
|
os.system("docker stop %s" % docker_hash2) |
|
|
|
|
|
@pytest.mark.skipif(not have_replicate_key, reason="requires Replicate key to run") |
|
@pytest.mark.parametrize("system_prompt", ['You are a baby cat who likes to talk to people.', '']) |
|
@pytest.mark.parametrize("chat_conversation", [chat_conversation1, []]) |
|
@pytest.mark.parametrize("force_langchain_evaluate", [False, True]) |
|
@wrap_test_forked |
|
def test_replicate_inference_server(force_langchain_evaluate, |
|
chat_conversation, |
|
system_prompt, |
|
prompt='Who are you?', stream_output=False, |
|
max_new_tokens=128, |
|
base_model='h2oai/h2ogpt-4096-llama2-7b-chat', |
|
langchain_mode='Disabled', |
|
langchain_action=LangChainAction.QUERY.value, |
|
langchain_agents=[], |
|
user_path=None, |
|
langchain_modes=['UserData', 'MyData', 'LLM', 'Disabled'], |
|
docs_ordering_type='reverse_sort'): |
|
if force_langchain_evaluate: |
|
langchain_mode = 'MyData' |
|
|
|
main_kwargs = dict(base_model=base_model, chat=True, |
|
stream_output=stream_output, gradio=True, num_beams=1, block_gradio_exit=False, |
|
max_new_tokens=max_new_tokens, |
|
langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, |
|
langchain_agents=langchain_agents, |
|
user_path=user_path, |
|
langchain_modes=langchain_modes, |
|
docs_ordering_type=docs_ordering_type) |
|
|
|
|
|
from src.gen import main |
|
|
|
|
|
model_string = "meta/llama-2-7b-chat:8e6975e5ed6174911a6ff3d60540dfd4844201974602551e10e9e87ab143d81e" |
|
main(**main_kwargs, inference_server='replicate:%s' % model_string) |
|
|
|
if chat_conversation: |
|
prompt = 'What did I ask?' |
|
|
|
|
|
from src.client_test import run_client_chat |
|
res_dict, client = run_client_chat(prompt=prompt, prompt_type='llama2', stream_output=stream_output, |
|
max_new_tokens=max_new_tokens, langchain_mode=langchain_mode, |
|
langchain_action=langchain_action, langchain_agents=langchain_agents, |
|
chat_conversation=chat_conversation, |
|
system_prompt=system_prompt) |
|
assert res_dict['prompt'] == prompt |
|
assert res_dict['iinput'] == '' |
|
|
|
if chat_conversation and system_prompt: |
|
|
|
return |
|
|
|
if chat_conversation or system_prompt: |
|
ret6, _ = test_client_basic_api_lean(prompt=prompt, prompt_type=None, |
|
chat_conversation=chat_conversation, |
|
system_prompt=system_prompt) |
|
if system_prompt: |
|
assert 'baby cat' in res_dict['response'] and 'meow' in res_dict['response'].lower() |
|
assert 'baby cat' in ret6['response'] and 'meow' in ret6['response'].lower() |
|
else: |
|
options_response = ['You asked "Who are you?"', |
|
"""You asked, \"Who are you?\"""", |
|
"""You asked: \"Who are you?\"""", |
|
] |
|
assert res_dict['response'] in options_response |
|
assert ret6['response'] in options_response |
|
|
|
return |
|
|
|
if system_prompt: |
|
|
|
return |
|
|
|
|
|
ret1, ret2, ret3, ret4, ret5, ret6, ret7 = run_client_many(prompt_type=None) |
|
who = 'an AI assistant' |
|
who2 = 'just an AI' |
|
assert who in ret1['response'] or who2 in ret1['response'] |
|
assert 'Once upon a time, in a far-off land,' in ret2['response'] or 'Once upon a time' in ret2['response'] |
|
assert 'Once upon a time, in a far-off land,' in ret3['response'] or 'Once upon a time' in ret3['response'] |
|
assert who in ret4['response'] or 'I am a helpful assistant designed' in ret4['response'] or who2 in ret4['response'] |
|
assert who in ret5['response'] or 'I am a helpful assistant designed' in ret5['response'] or who2 in ret5['response'] |
|
assert who in ret6['response'] or 'I am a helpful assistant designed' in ret6['response'] or who2 in ret6['response'] |
|
assert who in ret7['response'] or 'I am a helpful assistant designed' in ret7['response'] or who2 in ret7['response'] |
|
print("DONE", flush=True) |
|
|