blumenstiel
commited on
Commit
Β·
1e019a9
1
Parent(s):
58ac12b
Made timestamps flexible and updated description
Browse files
app.py
CHANGED
@@ -1,6 +1,14 @@
|
|
1 |
-
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
4 |
|
5 |
# pull files from hub
|
6 |
token = os.environ.get("HF_TOKEN", None)
|
@@ -15,206 +23,6 @@ model_inference = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-30
|
|
15 |
os.system(f'cp {model_def} .')
|
16 |
os.system(f'cp {model_inference} .')
|
17 |
|
18 |
-
import os
|
19 |
-
import torch
|
20 |
-
import yaml
|
21 |
-
import numpy as np
|
22 |
-
import gradio as gr
|
23 |
-
from einops import rearrange
|
24 |
-
from functools import partial
|
25 |
-
from prithvi_mae import PrithviMAE
|
26 |
-
from inference import process_channel_group, read_geotiff, save_geotiff, _convert_np_uint8, load_example, run_model
|
27 |
-
|
28 |
-
|
29 |
-
NO_DATA = -9999
|
30 |
-
NO_DATA_FLOAT = 0.0001
|
31 |
-
PERCENTILES = (0.1, 99.9)
|
32 |
-
|
33 |
-
|
34 |
-
# def process_channel_group(orig_img, new_img, channels, data_mean, data_std):
|
35 |
-
# """ Process *orig_img* and *new_img* for RGB visualization. Each band is rescaled back to the
|
36 |
-
# original range using *data_mean* and *data_std* and then lowest and highest percentiles are
|
37 |
-
# removed to enhance contrast. Data is rescaled to (0, 1) range and stacked channels_first.
|
38 |
-
# Args:
|
39 |
-
# orig_img: torch.Tensor representing original image (reference) with shape = (bands, H, W).
|
40 |
-
# new_img: torch.Tensor representing image with shape = (bands, H, W).
|
41 |
-
# channels: list of indices representing RGB channels.
|
42 |
-
# data_mean: list of mean values for each band.
|
43 |
-
# data_std: list of std values for each band.
|
44 |
-
# Returns:
|
45 |
-
# torch.Tensor with shape (num_channels, height, width) for original image
|
46 |
-
# torch.Tensor with shape (num_channels, height, width) for the other image
|
47 |
-
# """
|
48 |
-
#
|
49 |
-
# stack_c = [], []
|
50 |
-
#
|
51 |
-
# for c in channels:
|
52 |
-
# orig_ch = orig_img[c, ...]
|
53 |
-
# valid_mask = torch.ones_like(orig_ch, dtype=torch.bool)
|
54 |
-
# valid_mask[orig_ch == NO_DATA_FLOAT] = False
|
55 |
-
#
|
56 |
-
# # Back to original data range
|
57 |
-
# orig_ch = (orig_ch * data_std[c]) + data_mean[c]
|
58 |
-
# new_ch = (new_img[c, ...] * data_std[c]) + data_mean[c]
|
59 |
-
#
|
60 |
-
# # Rescale (enhancing contrast)
|
61 |
-
# min_value, max_value = np.percentile(orig_ch[valid_mask], PERCENTILES)
|
62 |
-
#
|
63 |
-
# orig_ch = torch.clamp((orig_ch - min_value) / (max_value - min_value), 0, 1)
|
64 |
-
# new_ch = torch.clamp((new_ch - min_value) / (max_value - min_value), 0, 1)
|
65 |
-
#
|
66 |
-
# # No data as zeros
|
67 |
-
# orig_ch[~valid_mask] = 0
|
68 |
-
# new_ch[~valid_mask] = 0
|
69 |
-
#
|
70 |
-
# stack_c[0].append(orig_ch)
|
71 |
-
# stack_c[1].append(new_ch)
|
72 |
-
#
|
73 |
-
# # Channels first
|
74 |
-
# stack_orig = torch.stack(stack_c[0], dim=0)
|
75 |
-
# stack_rec = torch.stack(stack_c[1], dim=0)
|
76 |
-
#
|
77 |
-
# return stack_orig, stack_rec
|
78 |
-
#
|
79 |
-
#
|
80 |
-
# def read_geotiff(file_path: str):
|
81 |
-
# """ Read all bands from *file_path* and returns image + meta info.
|
82 |
-
# Args:
|
83 |
-
# file_path: path to image file.
|
84 |
-
# Returns:
|
85 |
-
# np.ndarray with shape (bands, height, width)
|
86 |
-
# meta info dict
|
87 |
-
# """
|
88 |
-
#
|
89 |
-
# with rasterio.open(file_path) as src:
|
90 |
-
# img = src.read()
|
91 |
-
# meta = src.meta
|
92 |
-
# coords = src.lnglat()
|
93 |
-
#
|
94 |
-
# return img, meta, coords
|
95 |
-
#
|
96 |
-
#
|
97 |
-
# def save_geotiff(image, output_path: str, meta: dict):
|
98 |
-
# """ Save multi-band image in Geotiff file.
|
99 |
-
# Args:
|
100 |
-
# image: np.ndarray with shape (bands, height, width)
|
101 |
-
# output_path: path where to save the image
|
102 |
-
# meta: dict with meta info.
|
103 |
-
# """
|
104 |
-
#
|
105 |
-
# with rasterio.open(output_path, "w", **meta) as dest:
|
106 |
-
# for i in range(image.shape[0]):
|
107 |
-
# dest.write(image[i, :, :], i + 1)
|
108 |
-
#
|
109 |
-
# return
|
110 |
-
#
|
111 |
-
#
|
112 |
-
# def _convert_np_uint8(float_image: torch.Tensor):
|
113 |
-
#
|
114 |
-
# image = float_image.numpy() * 255.0
|
115 |
-
# image = image.astype(dtype=np.uint8)
|
116 |
-
# image = image.transpose((1, 2, 0))
|
117 |
-
#
|
118 |
-
# return image
|
119 |
-
#
|
120 |
-
#
|
121 |
-
# def load_example(file_paths: List[str], mean: List[float], std: List[float]):
|
122 |
-
# """ Build an input example by loading images in *file_paths*.
|
123 |
-
# Args:
|
124 |
-
# file_paths: list of file paths .
|
125 |
-
# mean: list containing mean values for each band in the images in *file_paths*.
|
126 |
-
# std: list containing std values for each band in the images in *file_paths*.
|
127 |
-
# Returns:
|
128 |
-
# np.array containing created example
|
129 |
-
# list of meta info for each image in *file_paths*
|
130 |
-
# """
|
131 |
-
#
|
132 |
-
# imgs = []
|
133 |
-
# metas = []
|
134 |
-
#
|
135 |
-
# for file in file_paths:
|
136 |
-
# img, meta = read_geotiff(file)
|
137 |
-
# img = img[:6]*10000 if img[:6].mean() <= 2 else img[:6]
|
138 |
-
#
|
139 |
-
# # Rescaling (don't normalize on nodata)
|
140 |
-
# img = np.moveaxis(img, 0, -1) # channels last for rescaling
|
141 |
-
# img = np.where(img == NO_DATA, NO_DATA_FLOAT, (img - mean) / std)
|
142 |
-
#
|
143 |
-
# imgs.append(img)
|
144 |
-
# metas.append(meta)
|
145 |
-
#
|
146 |
-
# imgs = np.stack(imgs, axis=0) # num_frames, H, W, C
|
147 |
-
# imgs = np.moveaxis(imgs, -1, 0).astype('float32') # C, num_frames, H, W
|
148 |
-
# imgs = np.expand_dims(imgs, axis=0) # add batch dim
|
149 |
-
#
|
150 |
-
# return imgs, metas
|
151 |
-
#
|
152 |
-
#
|
153 |
-
# def run_model(model: torch.nn.Module, input_data: torch.Tensor, mask_ratio: float, device: torch.device):
|
154 |
-
# """ Run *model* with *input_data* and create images from output tokens (mask, reconstructed + visible).
|
155 |
-
# Args:
|
156 |
-
# model: MAE model to run.
|
157 |
-
# input_data: torch.Tensor with shape (B, C, T, H, W).
|
158 |
-
# mask_ratio: mask ratio to use.
|
159 |
-
# device: device where model should run.
|
160 |
-
# Returns:
|
161 |
-
# 3 torch.Tensor with shape (B, C, T, H, W).
|
162 |
-
# """
|
163 |
-
#
|
164 |
-
# with torch.no_grad():
|
165 |
-
# x = input_data.to(device)
|
166 |
-
#
|
167 |
-
# _, pred, mask = model(x, mask_ratio)
|
168 |
-
#
|
169 |
-
# # Create mask and prediction images (un-patchify)
|
170 |
-
# mask_img = model.unpatchify(mask.unsqueeze(-1).repeat(1, 1, pred.shape[-1])).detach().cpu()
|
171 |
-
# pred_img = model.unpatchify(pred).detach().cpu()
|
172 |
-
#
|
173 |
-
# # Mix visible and predicted patches
|
174 |
-
# rec_img = input_data.clone()
|
175 |
-
# rec_img[mask_img == 1] = pred_img[mask_img == 1] # binary mask: 0 is keep, 1 is remove
|
176 |
-
#
|
177 |
-
# # Switch zeros/ones in mask images so masked patches appear darker in plots (better visualization)
|
178 |
-
# mask_img = (~(mask_img.to(torch.bool))).to(torch.float)
|
179 |
-
#
|
180 |
-
# return rec_img, mask_img
|
181 |
-
#
|
182 |
-
#
|
183 |
-
# def save_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std, output_dir, meta_data):
|
184 |
-
# """ Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
185 |
-
# Args:
|
186 |
-
# input_img: input torch.Tensor with shape (C, T, H, W).
|
187 |
-
# rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
|
188 |
-
# mask_img: mask torch.Tensor with shape (C, T, H, W).
|
189 |
-
# channels: list of indices representing RGB channels.
|
190 |
-
# mean: list of mean values for each band.
|
191 |
-
# std: list of std values for each band.
|
192 |
-
# output_dir: directory where to save outputs.
|
193 |
-
# meta_data: list of dicts with geotiff meta info.
|
194 |
-
# """
|
195 |
-
#
|
196 |
-
# for t in range(input_img.shape[1]):
|
197 |
-
# rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
|
198 |
-
# new_img=rec_img[:, t, :, :],
|
199 |
-
# channels=channels, data_mean=mean,
|
200 |
-
# data_std=std)
|
201 |
-
#
|
202 |
-
# rgb_mask = mask_img[channels, t, :, :] * rgb_orig
|
203 |
-
#
|
204 |
-
# # Saving images
|
205 |
-
#
|
206 |
-
# save_geotiff(image=_convert_np_uint8(rgb_orig),
|
207 |
-
# output_path=os.path.join(output_dir, f"original_rgb_t{t}.tiff"),
|
208 |
-
# meta=meta_data[t])
|
209 |
-
#
|
210 |
-
# save_geotiff(image=_convert_np_uint8(rgb_pred),
|
211 |
-
# output_path=os.path.join(output_dir, f"predicted_rgb_t{t}.tiff"),
|
212 |
-
# meta=meta_data[t])
|
213 |
-
#
|
214 |
-
# save_geotiff(image=_convert_np_uint8(rgb_mask),
|
215 |
-
# output_path=os.path.join(output_dir, f"masked_rgb_t{t}.tiff"),
|
216 |
-
# meta=meta_data[t])
|
217 |
-
|
218 |
|
219 |
def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
|
220 |
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
@@ -245,15 +53,21 @@ def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
|
|
245 |
rgb_orig_list.append(_convert_np_uint8(rgb_orig).transpose(1, 2, 0))
|
246 |
rgb_mask_list.append(_convert_np_uint8(rgb_mask).transpose(1, 2, 0))
|
247 |
rgb_pred_list.append(_convert_np_uint8(rgb_pred).transpose(1, 2, 0))
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
|
250 |
|
251 |
return outputs
|
252 |
|
253 |
|
254 |
-
def predict_on_images(data_files: list,
|
255 |
-
|
256 |
-
|
257 |
try:
|
258 |
data_files = [x.name for x in data_files]
|
259 |
print('Path extracted from example')
|
@@ -276,9 +90,7 @@ def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str,
|
|
276 |
|
277 |
mask_ratio = mask_ratio or config['DATA']['MASK_RATIO']
|
278 |
|
279 |
-
|
280 |
-
# TODO: Check if we can limit this via UI
|
281 |
-
logging.warning("Model was only trained with only four timestamps.")
|
282 |
|
283 |
if torch.cuda.is_available():
|
284 |
device = torch.device('cuda')
|
@@ -384,7 +196,7 @@ def predict_on_images(data_files: list, mask_ratio: float, yaml_file_path: str,
|
|
384 |
return outputs
|
385 |
|
386 |
|
387 |
-
|
388 |
|
389 |
with gr.Blocks() as demo:
|
390 |
|
@@ -397,10 +209,14 @@ Additionally, temporal and location information is added to the model input via
|
|
397 |
More info about the model are available [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL).\n
|
398 |
|
399 |
This demo showcases the image reconstruction over one to four timestamps.
|
400 |
-
The model randomly masks out some proportion of the images and
|
|
|
|
|
|
|
|
|
401 |
The user needs to provide the HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
|
402 |
Optionally, the location information is extracted from the tif files while the temporal information can be provided in the filename in the format `<date>T<time>` or `<year><julian day>T<time>` (HLS format).
|
403 |
-
|
404 |
''')
|
405 |
with gr.Row():
|
406 |
with gr.Column():
|
@@ -409,48 +225,26 @@ We recommend submitting images of size 224 to 1000 pixels for faster processing
|
|
409 |
btn = gr.Button("Submit")
|
410 |
with gr.Row():
|
411 |
gr.Markdown(value='## Original images')
|
412 |
-
with gr.Row():
|
413 |
-
gr.Markdown(value='T1')
|
414 |
-
gr.Markdown(value='T2')
|
415 |
-
gr.Markdown(value='T3')
|
416 |
-
with gr.Row():
|
417 |
-
out1_orig_t1 = gr.Image(image_mode='RGB')
|
418 |
-
out2_orig_t2 = gr.Image(image_mode='RGB')
|
419 |
-
out3_orig_t3 = gr.Image(image_mode='RGB')
|
420 |
-
with gr.Row():
|
421 |
gr.Markdown(value='## Masked images')
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
out9_pred_t3 = gr.Image(image_mode='RGB')
|
440 |
-
|
441 |
-
|
442 |
-
btn.click(fn=func,
|
443 |
-
# inputs=[inp_files, inp_slider],
|
444 |
inputs=inp_files,
|
445 |
-
outputs=
|
446 |
-
out2_orig_t2,
|
447 |
-
out3_orig_t3,
|
448 |
-
out4_masked_t1,
|
449 |
-
out5_masked_t2,
|
450 |
-
out6_masked_t3,
|
451 |
-
out7_pred_t1,
|
452 |
-
out8_pred_t2,
|
453 |
-
out9_pred_t3])
|
454 |
|
455 |
with gr.Row():
|
456 |
gr.Examples(examples=[[[os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
@@ -463,17 +257,16 @@ We recommend submitting images of size 224 to 1000 pixels for faster processing
|
|
463 |
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
464 |
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]]],
|
465 |
inputs=inp_files,
|
466 |
-
outputs=
|
467 |
-
|
468 |
-
out3_orig_t3,
|
469 |
-
out4_masked_t1,
|
470 |
-
out5_masked_t2,
|
471 |
-
out6_masked_t3,
|
472 |
-
out7_pred_t1,
|
473 |
-
out8_pred_t2,
|
474 |
-
out9_pred_t3],
|
475 |
-
fn=func,
|
476 |
cache_examples=True
|
477 |
)
|
478 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
demo.launch()
|
|
|
1 |
+
|
2 |
import os
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from einops import rearrange
|
8 |
+
from functools import partial
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
+
from prithvi_mae import PrithviMAE
|
11 |
+
from inference import process_channel_group, _convert_np_uint8, load_example, run_model
|
12 |
|
13 |
# pull files from hub
|
14 |
token = os.environ.get("HF_TOKEN", None)
|
|
|
23 |
os.system(f'cp {model_def} .')
|
24 |
os.system(f'cp {model_inference} .')
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
|
28 |
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
|
|
|
53 |
rgb_orig_list.append(_convert_np_uint8(rgb_orig).transpose(1, 2, 0))
|
54 |
rgb_mask_list.append(_convert_np_uint8(rgb_mask).transpose(1, 2, 0))
|
55 |
rgb_pred_list.append(_convert_np_uint8(rgb_pred).transpose(1, 2, 0))
|
56 |
+
|
57 |
+
# Add white dummy image values for missing timestamps
|
58 |
+
dummy = np.ones((20, 20), dtype=np.uint8) * 255
|
59 |
+
num_dummies = 4 - len(rgb_orig_list)
|
60 |
+
if num_dummies:
|
61 |
+
rgb_orig_list.extend([dummy] * num_dummies)
|
62 |
+
rgb_mask_list.extend([dummy] * num_dummies)
|
63 |
+
rgb_pred_list.extend([dummy] * num_dummies)
|
64 |
+
|
65 |
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
|
66 |
|
67 |
return outputs
|
68 |
|
69 |
|
70 |
+
def predict_on_images(data_files: list, yaml_file_path: str, checkpoint: str, mask_ratio: float = None):
|
|
|
|
|
71 |
try:
|
72 |
data_files = [x.name for x in data_files]
|
73 |
print('Path extracted from example')
|
|
|
90 |
|
91 |
mask_ratio = mask_ratio or config['DATA']['MASK_RATIO']
|
92 |
|
93 |
+
assert num_frames <= 4, "Demo only supports up to four timestamps"
|
|
|
|
|
94 |
|
95 |
if torch.cuda.is_available():
|
96 |
device = torch.device('cuda')
|
|
|
196 |
return outputs
|
197 |
|
198 |
|
199 |
+
run_inference = partial(predict_on_images, yaml_file_path=yaml_file_path,checkpoint=checkpoint)
|
200 |
|
201 |
with gr.Blocks() as demo:
|
202 |
|
|
|
209 |
More info about the model are available [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL).\n
|
210 |
|
211 |
This demo showcases the image reconstruction over one to four timestamps.
|
212 |
+
The model randomly masks out some proportion of the images and reconstructs them based on the not masked portion of the images.
|
213 |
+
The reconstructed images are merged with the visible unmasked patches.
|
214 |
+
We recommend submitting images of size 224 to ~1000 pixels for faster processing time.
|
215 |
+
Images bigger than 224x224 are processed using a sliding window approach which can lead to artefacts between patches.\n
|
216 |
+
|
217 |
The user needs to provide the HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
|
218 |
Optionally, the location information is extracted from the tif files while the temporal information can be provided in the filename in the format `<date>T<time>` or `<year><julian day>T<time>` (HLS format).
|
219 |
+
Some example images are provided at the end of this page.
|
220 |
''')
|
221 |
with gr.Row():
|
222 |
with gr.Column():
|
|
|
225 |
btn = gr.Button("Submit")
|
226 |
with gr.Row():
|
227 |
gr.Markdown(value='## Original images')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
gr.Markdown(value='## Masked images')
|
229 |
+
gr.Markdown(value='## Visible and reconstructed images')
|
230 |
+
|
231 |
+
original = []
|
232 |
+
masked = []
|
233 |
+
predicted = []
|
234 |
+
timestamps = []
|
235 |
+
for t in range(4):
|
236 |
+
timestamps.append(gr.Column(visible=t == 0))
|
237 |
+
with timestamps[t]:
|
238 |
+
with gr.Row():
|
239 |
+
gr.Markdown(value=f"Timestamp {t+1}")
|
240 |
+
with gr.Row():
|
241 |
+
original.append(gr.Image(image_mode='RGB'))
|
242 |
+
masked.append(gr.Image(image_mode='RGB'))
|
243 |
+
predicted.append(gr.Image(image_mode='RGB'))
|
244 |
+
|
245 |
+
btn.click(fn=run_inference,
|
|
|
|
|
|
|
|
|
|
|
246 |
inputs=inp_files,
|
247 |
+
outputs=original + masked + predicted)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
with gr.Row():
|
250 |
gr.Examples(examples=[[[os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T13REN.2018013T172747.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
|
|
257 |
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018141T154435.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif"),
|
258 |
os.path.join(os.path.dirname(__file__), "examples/HLS.L30.T18TVL.2018189T154446.v2.0.B02.B03.B04.B05.B06.B07_cropped.tif")]]],
|
259 |
inputs=inp_files,
|
260 |
+
outputs=original + masked + predicted,
|
261 |
+
fn=run_inference,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
cache_examples=True
|
263 |
)
|
264 |
|
265 |
+
def update_visibility(files):
|
266 |
+
timestamps = [gr.Column(visible=t < len(files)) for t in range(4)]
|
267 |
+
|
268 |
+
return timestamps
|
269 |
+
|
270 |
+
inp_files.change(update_visibility, inp_files, timestamps)
|
271 |
+
|
272 |
demo.launch()
|