Spaces:
Sleeping
Sleeping
import streamlit as st | |
import time | |
from transformers import pipeline | |
import librosa | |
import numpy as np | |
import plotly.graph_objects as go | |
import tempfile | |
import os | |
import soundfile as sf | |
# Set page config | |
st.set_page_config(page_title="π΅ Music Genre Classifier", layout="wide") | |
# Custom CSS for UI | |
st.markdown(""" | |
<style> | |
.main-title { | |
font-size: 3rem; | |
color: #1DB954; | |
text-align: center; | |
padding: 2rem 0; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.1); | |
} | |
.sub-title { | |
font-size: 1.5rem; | |
color: #191414; | |
text-align: center; | |
margin-bottom: 2rem; | |
} | |
.stAudio { | |
margin: 2rem auto; | |
display: block; | |
} | |
.genre-result { | |
font-size: 2rem; | |
font-weight: bold; | |
text-align: center; | |
color: #1DB954; | |
margin: 1rem 0; | |
} | |
.prediction-time { | |
font-size: 1.2rem; | |
color: #191414; | |
text-align: center; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def load_model(): | |
return pipeline("audio-classification", model="juangtzi/wav2vec2-base-finetuned-gtzan") | |
pipe = load_model() | |
def convert_to_wav(audio_file): | |
"""Converts uploaded audio file to WAV format.""" | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav: | |
# Use soundfile to load and save the audio file as WAV | |
audio_data, samplerate = sf.read(audio_file) | |
sf.write(tmp_wav.name, audio_data, samplerate) | |
return tmp_wav.name | |
def classify_audio(audio_file): | |
"""Classifies the audio file using the loaded model.""" | |
start_time = time.time() | |
# Convert to WAV format before passing to the model | |
wav_file = convert_to_wav(audio_file) | |
try: | |
# Use the wav file with the model | |
preds = pipe(wav_file) | |
outputs = {p["label"]: p["score"] for p in preds} | |
end_time = time.time() | |
prediction_time = end_time - start_time | |
return outputs, prediction_time | |
finally: | |
os.unlink(wav_file) # Remove the temp file | |
# Page title and subtitle | |
st.markdown("<h1 class='main-title'>π΅ Music Genre Classifier</h1>", unsafe_allow_html=True) | |
st.markdown("<p class='sub-title'>Upload a music file and let AI detect its genre!</p>", unsafe_allow_html=True) | |
# Sidebar with model and dataset information | |
st.sidebar.title("About") | |
st.sidebar.info(""" | |
This app uses a fine-tuned wav2vec2-base model to classify music genres. | |
Model: juangtzi/wav2vec2-base-finetuned-gtzan | |
Dataset: GTZAN | |
""") | |
# Upload file section | |
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "ogg"]) | |
if uploaded_file is not None: | |
# Display the uploaded audio file | |
st.audio(uploaded_file) | |
# Classify the uploaded audio | |
if st.button("Classify Genre"): | |
with st.spinner("Analyzing the music... π§"): | |
try: | |
results, pred_time = classify_audio(uploaded_file) | |
# Get the top predicted genre | |
top_genre = max(results, key=results.get) | |
# Display the top predicted genre | |
st.markdown(f"<h2 class='genre-result'>Detected Genre: {top_genre.capitalize()}</h2>", unsafe_allow_html=True) | |
st.markdown(f"<p class='prediction-time'>Prediction Time: {pred_time:.2f} seconds</p>", unsafe_allow_html=True) | |
# Plot the genre probabilities as a bar chart | |
fig = go.Figure(data=[go.Bar( | |
x=list(results.keys()), | |
y=list(results.values()), | |
marker_color='#1DB954' | |
)]) | |
fig.update_layout( | |
title="Genre Probabilities", | |
xaxis_title="Genre", | |
yaxis_title="Probability", | |
paper_bgcolor='rgba(0,0,0,0)', | |
plot_bgcolor='rgba(0,0,0,0)' | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
# # Load the audio for displaying waveform | |
# y, sr = librosa.load(uploaded_file, sr=None) | |
# # Plot the audio waveform | |
# st.subheader("Audio Waveform") | |
# fig_waveform = go.Figure(data=[go.Scatter(y=y, mode='lines', line=dict(color='#1DB954'))]) | |
# fig_waveform.update_layout( | |
# title="Audio Waveform", | |
# xaxis_title="Time", | |
# yaxis_title="Amplitude", | |
# paper_bgcolor='rgba(0,0,0,0)', | |
# plot_bgcolor='rgba(0,0,0,0)' | |
# ) | |
# st.plotly_chart(fig_waveform, use_container_width=True) | |
# π Show balloons after successfully displaying the results | |
st.balloons() | |
except Exception as e: | |
st.error(f"An error occurred while processing the audio: {str(e)}") | |
st.info("Please try uploading the file again or use a different audio file.") | |
# Footer | |
st.markdown(""" | |
<div style='text-align: center; margin-top: 2rem;'> | |
<p>Created with β€οΈ by AI. Powered by Streamlit and Hugging Face Transformers.</p> | |
</div> | |
""", unsafe_allow_html=True) | |