Spaces:
Runtime error
Runtime error
File size: 8,887 Bytes
a891a57 61ea780 5379bd5 a891a57 4f1874e d4a5c81 a891a57 d55e5c1 a891a57 913899c add5fb2 5379bd5 31d59de 5379bd5 31d59de 5379bd5 31d59de 5379bd5 a891a57 f647a26 dfa0990 a891a57 0bc2c6f a891a57 fef0beb c687a76 31d59de fef0beb a891a57 9823588 d3cb9a3 61ea780 dfa0990 d2524ee d3cb9a3 b8d159a d3cb9a3 9823588 a891a57 5379bd5 a891a57 31d59de a891a57 add5fb2 a891a57 c687a76 15ec329 add5fb2 a891a57 0bc2c6f a891a57 0bc2c6f a891a57 0bc2c6f a891a57 0bc2c6f ad03442 0bc2c6f a891a57 0e9358c add5fb2 0bc2c6f a891a57 add5fb2 a891a57 0bc2c6f 5379bd5 a891a57 0e9358c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# coding: utf-8
"""
The entrance of the gradio
"""
import tyro
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
import spaces
import cv2
# import gdown
# folder_url = f"https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib"
# gdown.download_folder(url=folder_url, output="pretrained_weights", quiet=False)
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
gradio_pipeline = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
@spaces.GPU(duration=240)
def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
@spaces.GPU(duration=240)
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
def is_square_video(video_path):
video = cv2.VideoCapture(video_path)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
if width != height:
raise gr.Error("Error: the video does not have a square aspect ratio. We currently only support square videos")
return gr.update(visible=True)
# assets
title_md = "assets/gradio_title.md"
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples = [
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, True],
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, True],
]
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video()
output_video_concat = gr.Video()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML(load_description(title_md))
gr.Markdown(load_description("assets/gradio_description_upload.md"))
with gr.Row():
with gr.Accordion(open=True, label="Source Portrait"):
image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[image_input],
cache_examples=False,
)
with gr.Accordion(open=True, label="Driving Video"):
video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d0.mp4")],
[osp.join(example_video_dir, "d18.mp4")],
[osp.join(example_video_dir, "d19.mp4")],
[osp.join(example_video_dir, "d14_trim.mp4")],
[osp.join(example_video_dir, "d6_trim.mp4")],
],
inputs=[video_input],
cache_examples=False,
)
with gr.Row():
with gr.Accordion(open=False, label="Animation Instructions and Options"):
gr.Markdown(load_description("assets/gradio_description_animation.md"))
with gr.Row():
flag_relative_input = gr.Checkbox(value=True, label="relative motion")
flag_do_crop_input = gr.Checkbox(value=True, label="do crop")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
with gr.Row():
with gr.Column():
process_button_animation = gr.Button("🚀 Animate", variant="primary")
with gr.Column():
process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="🧹 Clear")
with gr.Row():
with gr.Column():
with gr.Accordion(open=True, label="The animated video in the original image space"):
output_video.render()
with gr.Column():
with gr.Accordion(open=True, label="The animated video"):
output_video_concat.render()
with gr.Row():
# Examples
gr.Markdown("## You could also choose the examples below by one click ⬇️")
with gr.Row():
gr.Examples(
examples=data_examples,
fn=gpu_wrapped_execute_video,
inputs=[
image_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input
],
outputs=[output_image, output_image_paste_back],
examples_per_page=5,
cache_examples=False,
)
gr.Markdown(load_description("assets/gradio_description_retargeting.md"), visible=True)
with gr.Row(visible=True):
eye_retargeting_slider.render()
lip_retargeting_slider.render()
with gr.Row(visible=True):
process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary")
process_button_reset_retargeting = gr.ClearButton(
[
eye_retargeting_slider,
lip_retargeting_slider,
retargeting_input_image,
output_image,
output_image_paste_back
],
value="🧹 Clear"
)
with gr.Row(visible=True):
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Input"):
retargeting_input_image.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[retargeting_input_image],
cache_examples=False,
)
with gr.Column():
with gr.Accordion(open=True, label="Retargeting Result"):
output_image.render()
with gr.Column():
with gr.Accordion(open=True, label="Paste-back Result"):
output_image_paste_back.render()
# binding functions for buttons
process_button_retargeting.click(
# fn=gradio_pipeline.execute_image,
fn=gpu_wrapped_execute_image,
inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
outputs=[output_image, output_image_paste_back],
show_progress=True
)
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
image_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input
],
outputs=[output_video, output_video_concat],
show_progress=True
)
# image_input.change(
# fn=gradio_pipeline.prepare_retargeting,
# inputs=image_input,
# outputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image]
# )
video_input.upload(
fn=is_square_video,
inputs=video_input,
outputs=video_input
)
demo.launch(
server_port=args.server_port,
share=args.share,
server_name=args.server_name
)
|