File size: 8,831 Bytes
c37d4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f1c62
 
c37d4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from pathlib import Path
from num2words import num2words
import numpy as np
import os
import random
import re
import torch
import json
from shapely.geometry.polygon import Polygon
from shapely.affinity import scale
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor

os.system('pip3 install gradio==2.7.5')
import gradio as gr

from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("architext/gptj-162M")
finetuned = AutoModelForCausalLM.from_pretrained("architext/gptj-162M")

device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(device)
finetuned = finetuned.to(device)

# Utility functions

def containsNumber(value):
    for character in value:
        if character.isdigit():
            return True
    return False
    
def creativity(intensity):
    if(intensity == 'Low'):
        top_p = 0.95
        top_k = 10
    elif(intensity == 'Medium'):
        top_p = 0.9
        top_k = 50
    if(intensity == 'High'):
        top_p = 0.85
        top_k = 100
    return top_p, top_k

housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6, 
                         "balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}

architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255], 
                   [6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],]

regex = re.compile(".*?\((.*?)\)")

def draw_polygons(polygons, colors, im_size=(512, 512), b_color="white", fpath=None):
    image = Image.new("RGBA", im_size, color="white")
    draw = ImageDraw.Draw(image)
    for poly, color, in zip(polygons, colors):
        #get initial polygon coordinates
        xy = poly.exterior.xy
        coords = np.dstack((xy[1], xy[0])).flatten()
        # draw it on canvas, with the appropriate colors
        draw.polygon(list(coords), fill=(0, 0, 0))
        #get inner polygon coordinates
        small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
        if small_poly.geom_type == 'MultiPolygon':
            mycoordslist = [list(x.exterior.coords) for x in small_poly]
            for coord in mycoordslist:
                coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
                draw.polygon(list(coords), fill=tuple(color)) 
        elif poly.geom_type == 'Polygon':
            #get inner polygon coordinates
            xy2 = small_poly.exterior.xy
            coords2 = np.dstack((xy2[1], xy2[0])).flatten()
            # draw it on canvas, with the appropriate colors
            draw.polygon(list(coords2), fill=tuple(color))
    image = image.transpose(Image.FLIP_TOP_BOTTOM)
    if(fpath):
        image.save(fpath, quality=100, subsampling=0)
    return draw, image

def prompt_to_layout(user_prompt, intensity, fpath=None):
    if(containsNumber(user_prompt) == True):
        spaced_prompt = user_prompt.split(' ')
        new_prompt = ' '.join([word if word.isdigit() == False else num2words(int(word)).lower() for word in spaced_prompt])
        model_prompt = '[User prompt] {} [Layout]'.format(new_prompt)
    top_p, top_k = creativity(intensity)
    model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
    input_ids = tokenizer(model_prompt, return_tensors='pt').to(device)
    output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k, 
                                eos_token_id=50256, max_length=400)
    output = tokenizer.batch_decode(output, skip_special_tokens=True)
    layout = output[0].split('[User prompt]')[1].split('[Layout] ')[1].split(', ')
    spaces = [txt.split(':')[0] for txt in layout]
    coords = [txt.split(':')[1].rstrip() for txt in layout]
    coordinates = [re.findall(regex, coord) for coord in coords]
    
    num_coords = []
    for coord in coordinates:
        temp = []
        for xy in coord:
            numbers = xy.split(',')
            temp.append(tuple([int(num)/14.2 for num in numbers]))
        num_coords.append(temp)
        
    new_spaces = []
    for i, v in enumerate(spaces):
        totalcount = spaces.count(v)
        count = spaces[:i].count(v)
        new_spaces.append(v + str(count + 1) if totalcount > 1 else v)
        
    out_dict = dict(zip(new_spaces, num_coords))
    out_dict = json.dumps(out_dict)
       
    polygons = []
    for coord in coordinates:
        polygons.append([point.split(',') for point in coord])  
    geom = []
    for poly in polygons:
        scaled_poly = scale(Polygon(np.array(poly, dtype=int)), xfact=2, yfact=2, origin=(0,0))
        geom.append(scaled_poly)  
    colors = [architext_colors[housegan_labels[space]] for space in spaces]
    _, im = draw_polygons(geom, colors, fpath=fpath)
    html = '<img class="labels" src="images/labels.png" />'
    legend = Image.open("labels.png")
    imgs_comb = np.vstack([im, legend])
    imgs_comb = Image.fromarray(imgs_comb)
    return imgs_comb, out_dict 
     
    
# Gradio App

custom_css="""
@import url("https://use.typekit.net/nid3pfr.css");
.gradio_wrapper .gradio_bg[is_embedded=false] {
  min-height: 80%;
}

.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page {
  display: flex;
  width: 100vw;
  min-height: 50vh;
  flex-direction: column;
  justify-content: center;
  align-items: center;
  margin: 0px;
  max-width: 100vw;
  background: #FFFFFF;
}

.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .content {
  padding: 0px;
  margin: 0px;
}

.gradio_interface {
  width: 100vw;
  max-width: 1500px;
}

.gradio_interface .panel:nth-child(2) .component:nth-child(3) { 
    display:none
}

.gradio_wrapper .gradio_bg[theme=default] .panel_buttons {
  justify-content: flex-end;
}

.gradio_wrapper .gradio_bg[theme=default] .panel_button {
  flex: 0 0 0;
  min-width: 150px;
}

.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit { 
  background: #11213A;
  border-radius: 5px;
  color: #FFFFFF;
  text-transform: uppercase;
  min-width: 150px;
  height: 4em;
  letter-spacing: 0.15em;
  flex: 0 0 0;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit:hover { 
  background: #000000;
}

.input_text:focus {
  border-color: #FA7880;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text input, 
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text textarea {
  font: 200 45px garamond-premier-pro-display, serif;
  line-height: 110%;
  color: #11213A;
  border-radius: 5px;
  padding: 15px;
  border: none;
  background: #F2F4F4;
}
.input_text textarea:focus-visible { 
  outline: none;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .radio_item.selected {
    background-color: #11213A;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .selected .radio_circle {
    border-color: #4365c4;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
    width: 100%;
    height: 40vw;
    max-height: 630px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image .image_preview_holder {
    background: transparent;
}
.panel:nth-child(1) {
  margin-left: 50px;
  margin-right: 50px;
  margin-bottom: 80px;
  max-width: 750px;
}
.panel {
  background: transparent;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .component_set {
  background: transparent;
  box-shadow: none;
}
.panel:nth-child(2) .gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_header {
  display: none;
}

.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .footer {
    transform: scale(0.75);
    filter: grayscale(1);
}

.labels {
    height: 20px;
    width: auto;
}

@media (max-width: 1000px){
    .panel:nth-child(1) {
        margin-left: 0px;
        margin-right: 0px;
    }
    .gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
        height: auto;
    }
}
""" 
creative_slider = gr.inputs.Radio(["Low", "Medium", "High"], default="Low", label='Creativity')
textbox = gr.inputs.Textbox(placeholder='An apartment with two bedrooms and one bathroom', lines="3", 
                            label="DESCRIBE YOUR IDEAL APARTMENT")
generated = gr.outputs.Image(label='Generated Layout')
layout = gr.outputs.Textbox(label='Layout Coordinates')

iface = gr.Interface(fn=prompt_to_layout, inputs=[textbox, creative_slider], 
                     outputs=[generated, layout],
                     css=custom_css,
                     theme="default",
                     allow_flagging='never',
                     allow_screenshot=False,
                     thumbnail="thumbnail_gradio.PNG")

iface.launch(enable_queue=True, share=True)