ifire's picture
Try again.
a15d1a4
raw
history blame
10.3 kB
from pathlib import Path
from num2words import num2words
import numpy as np
import os
import random
import re
import torch
import json
from shapely.geometry.polygon import Polygon
from shapely.affinity import scale
from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor
os.system('pip3 install gradio==3.14.0')
import gradio as gr
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from transformers.models.gptj.modeling_gptj import apply_rotary_pos_emb as apply_rotary_pos_emb_pt
tokenizer = AutoTokenizer.from_pretrained("architext/gptj-162M")
finetuned = AutoModelForCausalLM.from_pretrained("architext/gptj-162M")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(device)
finetuned = finetuned.to(device)
# Utility functions
def containsNumber(value):
for character in value:
if character.isdigit():
return True
return False
def creativity(intensity):
if(intensity == 'Low'):
top_p = 0.95
top_k = 10
elif(intensity == 'Medium'):
top_p = 0.9
top_k = 50
if(intensity == 'High'):
top_p = 0.85
top_k = 100
return top_p, top_k
housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6,
"balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10}
architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255],
[6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],]
regex = re.compile(".*?\((.*?)\)")
def draw_polygons(polygons, colors, im_size=(512, 512), b_color="white", fpath=None):
image = Image.new("RGBA", im_size, color="white")
draw = ImageDraw.Draw(image)
for poly, color, in zip(polygons, colors):
#get initial polygon coordinates
xy = poly.exterior.xy
coords = np.dstack((xy[1], xy[0])).flatten()
# draw it on canvas, with the appropriate colors
draw.polygon(list(coords), fill=(0, 0, 0))
#get inner polygon coordinates
small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0)
if small_poly.geom_type == 'MultiPolygon':
mycoordslist = [list(x.exterior.coords) for x in small_poly]
for coord in mycoordslist:
coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten()
draw.polygon(list(coords), fill=tuple(color))
elif poly.geom_type == 'Polygon':
#get inner polygon coordinates
xy2 = small_poly.exterior.xy
coords2 = np.dstack((xy2[1], xy2[0])).flatten()
# draw it on canvas, with the appropriate colors
draw.polygon(list(coords2), fill=tuple(color))
image = image.transpose(Image.FLIP_TOP_BOTTOM)
if(fpath):
image.save(fpath, quality=100, subsampling=0)
return draw, image
def prompt_to_layout(user_prompt, intensity, fpath=None):
if(containsNumber(user_prompt) == True):
spaced_prompt = user_prompt.split(' ')
new_prompt = ' '.join([word if word.isdigit() == False else num2words(int(word)).lower() for word in spaced_prompt])
model_prompt = '[User prompt] {} [Layout]'.format(new_prompt)
top_p, top_k = creativity(intensity)
model_prompt = '[User prompt] {} [Layout]'.format(user_prompt)
input_ids = tokenizer(model_prompt, return_tensors='pt').to(device)
output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k,
eos_token_id=50256, max_length=400)
output = tokenizer.batch_decode(output, skip_special_tokens=True)
layout = output[0].split('[User prompt]')[1].split('[Layout] ')[1].split(', ')
spaces = [txt.split(':')[0] for txt in layout]
coords = []
for txt in layout:
if ':' in txt:
split_txt = txt.split(':')
coords.append(split_txt[1].rstrip())
coordinates = [re.findall(regex, coord) for coord in coords]
# Initialize an empty list to store the numerical coordinates
num_coords = []
# Iterate over each coordinate in the coordinates list
for coord in coordinates:
temp = [] # Temporary list to store the cleaned numbers
# Split the coordinate into individual numbers
for xy in coord:
numbers = xy.split(',')
# Clean each number and convert it to an integer
for num in numbers:
clean_num = re.sub(r'^\D*|\D*$', '', num) # Remove non-digit characters
# Check if the cleaned number is a digit
if clean_num.isdigit():
# Convert the cleaned number to an integer and divide it by 14.2
# If division by zero occurs, skip this number
try:
temp.append(int(clean_num)/14.2)
except ZeroDivisionError:
continue # Skip this number and continue with the next one
# Append the temporary list to the num_coords list
num_coords.append(temp)
new_spaces = []
for i, v in enumerate(spaces):
totalcount = spaces.count(v)
count = spaces[:i].count(v)
new_spaces.append(v + str(count + 1) if totalcount > 1 else v)
out_dict = dict(zip(new_spaces, num_coords))
out_dict = json.dumps(out_dict)
polygons = []
for coord in coordinates:
polygons.append([point.split(',') for point in coord])
geom = []
for poly in polygons:
new_poly = [list(map(int, point)) for point in poly]
if len(new_poly) >= 4:
scaled_poly = scale(Polygon(new_poly), xfact=2, yfact=2, origin=(0,0))
geom.append(scaled_poly)
colors: List[int] = []
for space in spaces:
for key in housegan_labels.keys():
if key in space:
colors.append(architext_colors[housegan_labels[key]])
break
_, im = draw_polygons(geom, colors, fpath=fpath)
html = '<img class="labels" src="images/labels.png" />'
legend = Image.open("labels.png")
imgs_comb = np.vstack([im, legend])
imgs_comb = Image.fromarray(imgs_comb)
return imgs_comb, out_dict
# Gradio App
custom_css="""
@import url("https://use.typekit.net/nid3pfr.css");
.gradio_wrapper .gradio_bg[is_embedded=false] {
min-height: 80%;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page {
display: flex;
width: 100vw;
min-height: 50vh;
flex-direction: column;
justify-content: center;
align-items: center;
margin: 0px;
max-width: 100vw;
background: #FFFFFF;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .content {
padding: 0px;
margin: 0px;
}
.gradio_interface {
width: 100vw;
max-width: 1500px;
}
.gradio_interface .panel:nth-child(2) .component:nth-child(3) {
display:none
}
.gradio_wrapper .gradio_bg[theme=default] .panel_buttons {
justify-content: flex-end;
}
.gradio_wrapper .gradio_bg[theme=default] .panel_button {
flex: 0 0 0;
min-width: 150px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit {
background: #11213A;
border-radius: 5px;
color: #FFFFFF;
text-transform: uppercase;
min-width: 150px;
height: 4em;
letter-spacing: 0.15em;
flex: 0 0 0;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_button.submit:hover {
background: #000000;
}
.input_text:focus {
border-color: #FA7880;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text input,
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_text textarea {
font: 200 45px garamond-premier-pro-display, serif;
line-height: 110%;
color: #11213A;
border-radius: 5px;
padding: 15px;
border: none;
background: #F2F4F4;
}
.input_text textarea:focus-visible {
outline: none;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .radio_item.selected {
background-color: #11213A;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .input_radio .selected .radio_circle {
border-color: #4365c4;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
width: 100%;
height: 40vw;
max-height: 630px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image .image_preview_holder {
background: transparent;
}
.panel:nth-child(1) {
margin-left: 50px;
margin-right: 50px;
margin-bottom: 80px;
max-width: 750px;
}
.panel {
background: transparent;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .component_set {
background: transparent;
box-shadow: none;
}
.panel:nth-child(2) .gradio_wrapper .gradio_bg[theme=default] .gradio_interface .panel_header {
display: none;
}
.gradio_wrapper .gradio_bg[is_embedded=false] .gradio_page .footer {
transform: scale(0.75);
filter: grayscale(1);
}
.labels {
height: 20px;
width: auto;
}
@media (max-width: 1000px){
.panel:nth-child(1) {
margin-left: 0px;
margin-right: 0px;
}
.gradio_wrapper .gradio_bg[theme=default] .gradio_interface .output_image {
height: auto;
}
}
"""
creative_slider = gr.inputs.Radio(["Low", "Medium", "High"], default="Low", label='Creativity')
textbox = gr.inputs.Textbox(placeholder='An apartment with two bedrooms and one bathroom', lines="3",
label="DESCRIBE YOUR IDEAL APARTMENT")
generated = gr.outputs.Image(label='Generated Layout', type='numpy')
layout = gr.outputs.Textbox(label='Layout Coordinates')
examples = [
["two bedrooms and two bathrooms", "Low"],
["three bedrooms with a kitchen adjacent to the dining room", "Medium"]
]
iface = gr.Interface(fn=prompt_to_layout, inputs=[textbox, creative_slider],
outputs=[generated, layout],
css=custom_css,
theme="default",
allow_flagging='never',
allow_screenshot=False,
thumbnail="thumbnail_gradio.PNG",
examples=examples)
iface.launch(enable_queue=True)