File size: 10,419 Bytes
95ba5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import sys
from datetime import datetime

import torch
import numpy as np

class Logger(object):
    def __init__(self, logpath, syspart=sys.stdout):
        self.terminal = syspart
        self.log = open(logpath, "a")

    def write(self, message):

        self.terminal.write(message)
        self.log.write(message)
        self.log.flush()

    def flush(self):
        # this flush method is needed for python 3 compatibility.
        # this handles the flush command by doing nothing.
        # you might want to specify some extra behavior here.
        pass

def log(*args):
    print(f'[{datetime.now()}]', *args)

class EMA:
    def __init__(self, beta):
        super().__init__()
        self.beta = beta

    def update_model_average(self, ma_model, current_model):
        for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
            old_weight, up_weight = ma_params.data, current_params.data
            ma_params.data = self.update_average(old_weight, up_weight)

    def update_average(self, old, new):
        if old is None:
            return new
        return old * self.beta + (1 - self.beta) * new


def sum_except_batch(x):
    return x.reshape(x.size(0), -1).sum(dim=-1)


def remove_mean(x):
    mean = torch.mean(x, dim=1, keepdim=True)
    x = x - mean
    return x


def remove_mean_with_mask(x, node_mask):
    masked_max_abs_value = (x * (1 - node_mask)).abs().sum().item()
    assert masked_max_abs_value < 1e-5, f'Error {masked_max_abs_value} too high'
    N = node_mask.sum(1, keepdims=True)

    mean = torch.sum(x, dim=1, keepdim=True) / N
    x = x - mean * node_mask
    return x


def remove_partial_mean_with_mask(x, node_mask, center_of_mass_mask):
    """
    Subtract center of mass of fragments from coordinates of all atoms
    """
    x_masked = x * center_of_mass_mask
    N = center_of_mass_mask.sum(1, keepdims=True)
    mean = torch.sum(x_masked, dim=1, keepdim=True) / N
    x = x - mean * node_mask
    return x


def assert_mean_zero(x):
    mean = torch.mean(x, dim=1, keepdim=True)
    assert mean.abs().max().item() < 1e-4


def assert_mean_zero_with_mask(x, node_mask, eps=1e-10):
    assert_correctly_masked(x, node_mask)
    largest_value = x.abs().max().item()
    error = torch.sum(x, dim=1, keepdim=True).abs().max().item()
    rel_error = error / (largest_value + eps)
    assert rel_error < 1e-2, f'Mean is not zero, relative_error {rel_error}'


def assert_partial_mean_zero_with_mask(x, node_mask, center_of_mass_mask, eps=1e-10):
    assert_correctly_masked(x, node_mask)
    x_masked = x * center_of_mass_mask
    largest_value = x_masked.abs().max().item()
    error = torch.sum(x_masked, dim=1, keepdim=True).abs().max().item()
    rel_error = error / (largest_value + eps)
    assert rel_error < 1e-2, f'Partial mean is not zero, relative_error {rel_error}'


def assert_correctly_masked(variable, node_mask):
    assert (variable * (1 - node_mask)).abs().max().item() < 1e-4, \
        'Variables not masked properly.'


def check_mask_correct(variables, node_mask):
    for i, variable in enumerate(variables):
        if len(variable) > 0:
            assert_correctly_masked(variable, node_mask)


def center_gravity_zero_gaussian_log_likelihood(x):
    assert len(x.size()) == 3
    B, N, D = x.size()
    assert_mean_zero(x)

    # r is invariant to a basis change in the relevant hyperplane.
    r2 = sum_except_batch(x.pow(2))

    # The relevant hyperplane is (N-1) * D dimensional.
    degrees_of_freedom = (N-1) * D

    # Normalizing constant and logpx are computed:
    log_normalizing_constant = -0.5 * degrees_of_freedom * np.log(2*np.pi)
    log_px = -0.5 * r2 + log_normalizing_constant

    return log_px


def sample_center_gravity_zero_gaussian(size, device):
    assert len(size) == 3
    x = torch.randn(size, device=device)

    # This projection only works because Gaussian is rotation invariant around
    # zero and samples are independent!
    x_projected = remove_mean(x)
    return x_projected


def center_gravity_zero_gaussian_log_likelihood_with_mask(x, node_mask):
    assert len(x.size()) == 3
    B, N_embedded, D = x.size()
    assert_mean_zero_with_mask(x, node_mask)

    # r is invariant to a basis change in the relevant hyperplane, the masked
    # out values will have zero contribution.
    r2 = sum_except_batch(x.pow(2))

    # The relevant hyperplane is (N-1) * D dimensional.
    N = node_mask.squeeze(2).sum(1)  # N has shape [B]
    degrees_of_freedom = (N-1) * D

    # Normalizing constant and logpx are computed:
    log_normalizing_constant = -0.5 * degrees_of_freedom * np.log(2*np.pi)
    log_px = -0.5 * r2 + log_normalizing_constant

    return log_px


def sample_center_gravity_zero_gaussian_with_mask(size, device, node_mask):
    assert len(size) == 3
    x = torch.randn(size, device=device)

    x_masked = x * node_mask

    # This projection only works because Gaussian is rotation invariant around
    # zero and samples are independent!
    # TODO: check it
    x_projected = remove_mean_with_mask(x_masked, node_mask)
    return x_projected


def standard_gaussian_log_likelihood(x):
    # Normalizing constant and logpx are computed:
    log_px = sum_except_batch(-0.5 * x * x - 0.5 * np.log(2*np.pi))
    return log_px


def sample_gaussian(size, device):
    x = torch.randn(size, device=device)
    return x


def standard_gaussian_log_likelihood_with_mask(x, node_mask):
    # Normalizing constant and logpx are computed:
    log_px_elementwise = -0.5 * x * x - 0.5 * np.log(2*np.pi)
    log_px = sum_except_batch(log_px_elementwise * node_mask)
    return log_px


def sample_gaussian_with_mask(size, device, node_mask):
    x = torch.randn(size, device=device)
    x_masked = x * node_mask
    return x_masked


def concatenate_features(x, h):
    xh = torch.cat([x, h['categorical']], dim=2)
    if 'integer' in h:
        xh = torch.cat([xh, h['integer']], dim=2)
    return xh


def split_features(z, n_dims, num_classes, include_charges):
    assert z.size(2) == n_dims + num_classes + include_charges
    x = z[:, :, 0:n_dims]
    h = {'categorical': z[:, :, n_dims:n_dims+num_classes]}
    if include_charges:
        h['integer'] = z[:, :, n_dims+num_classes:n_dims+num_classes+1]

    return x, h


# For gradient clipping

class Queue:
    def __init__(self, max_len=50):
        self.items = []
        self.max_len = max_len

    def __len__(self):
        return len(self.items)

    def add(self, item):
        self.items.insert(0, item)
        if len(self) > self.max_len:
            self.items.pop()

    def mean(self):
        return np.mean(self.items)

    def std(self):
        return np.std(self.items)


def gradient_clipping(flow, gradnorm_queue):
    # Allow gradient norm to be 150% + 2 * stdev of the recent history.
    max_grad_norm = 1.5 * gradnorm_queue.mean() + 2 * gradnorm_queue.std()

    # Clips gradient and returns the norm
    grad_norm = torch.nn.utils.clip_grad_norm_(
        flow.parameters(), max_norm=max_grad_norm, norm_type=2.0)

    if float(grad_norm) > max_grad_norm:
        gradnorm_queue.add(float(max_grad_norm))
    else:
        gradnorm_queue.add(float(grad_norm))

    if float(grad_norm) > max_grad_norm:
        print(f'Clipped gradient with value {grad_norm:.1f} while allowed {max_grad_norm:.1f}')
    return grad_norm


def disable_rdkit_logging():
    """
    Disables RDKit whiny logging.
    """
    import rdkit.rdBase as rkrb
    import rdkit.RDLogger as rkl
    logger = rkl.logger()
    logger.setLevel(rkl.ERROR)
    rkrb.DisableLog('rdApp.error')


class FoundNaNException(Exception):
    def __init__(self, x, h):
        x_nan_idx = self.find_nan_idx(x)
        h_nan_idx = self.find_nan_idx(h)

        self.x_h_nan_idx = x_nan_idx & h_nan_idx
        self.only_x_nan_idx = x_nan_idx.difference(h_nan_idx)
        self.only_h_nan_idx = h_nan_idx.difference(x_nan_idx)

    @staticmethod
    def find_nan_idx(z):
        idx = set()
        for i in range(z.shape[0]):
            if torch.any(torch.isnan(z[i])):
                idx.add(i)
        return idx


def get_batch_idx_for_animation(batch_size, batch_idx):
    batch_indices = []
    mol_indices = []
    for idx in [0, 110, 360]:
        if idx // batch_size == batch_idx:
            batch_indices.append(idx % batch_size)
            mol_indices.append(idx)
    return batch_indices, mol_indices


# Rotation data augmntation
def random_rotation(x):
    bs, n_nodes, n_dims = x.size()
    device = x.device
    angle_range = np.pi * 2
    if n_dims == 2:
        theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
        cos_theta = torch.cos(theta)
        sin_theta = torch.sin(theta)
        R_row0 = torch.cat([cos_theta, -sin_theta], dim=2)
        R_row1 = torch.cat([sin_theta, cos_theta], dim=2)
        R = torch.cat([R_row0, R_row1], dim=1)

        x = x.transpose(1, 2)
        x = torch.matmul(R, x)
        x = x.transpose(1, 2)

    elif n_dims == 3:

        # Build Rx
        Rx = torch.eye(3).unsqueeze(0).repeat(bs, 1, 1).to(device)
        theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
        cos = torch.cos(theta)
        sin = torch.sin(theta)
        Rx[:, 1:2, 1:2] = cos
        Rx[:, 1:2, 2:3] = sin
        Rx[:, 2:3, 1:2] = - sin
        Rx[:, 2:3, 2:3] = cos

        # Build Ry
        Ry = torch.eye(3).unsqueeze(0).repeat(bs, 1, 1).to(device)
        theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
        cos = torch.cos(theta)
        sin = torch.sin(theta)
        Ry[:, 0:1, 0:1] = cos
        Ry[:, 0:1, 2:3] = -sin
        Ry[:, 2:3, 0:1] = sin
        Ry[:, 2:3, 2:3] = cos

        # Build Rz
        Rz = torch.eye(3).unsqueeze(0).repeat(bs, 1, 1).to(device)
        theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
        cos = torch.cos(theta)
        sin = torch.sin(theta)
        Rz[:, 0:1, 0:1] = cos
        Rz[:, 0:1, 1:2] = sin
        Rz[:, 1:2, 0:1] = -sin
        Rz[:, 1:2, 1:2] = cos

        x = x.transpose(1, 2)
        x = torch.matmul(Rx, x)
        #x = torch.matmul(Rx.transpose(1, 2), x)
        x = torch.matmul(Ry, x)
        #x = torch.matmul(Ry.transpose(1, 2), x)
        x = torch.matmul(Rz, x)
        #x = torch.matmul(Rz.transpose(1, 2), x)
        x = x.transpose(1, 2)
    else:
        raise Exception("Not implemented Error")

    return x.contiguous()