Spaces:
Running
on
A10G
Running
on
A10G
File size: 20,119 Bytes
95ba5bc 88b37fb 95ba5bc 88b37fb 95ba5bc 88b37fb 95ba5bc 88b37fb 95ba5bc 88b37fb 95ba5bc c104a99 95ba5bc c104a99 95ba5bc 88b37fb 95ba5bc c104a99 95ba5bc c104a99 95ba5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
import numpy as np
import os
import pytorch_lightning as pl
import torch
import wandb
from src import metrics, utils, delinker
from src.const import LINKER_SIZE_DIST
from src.egnn import Dynamics, DynamicsWithPockets
from src.edm import EDM, InpaintingEDM
from src.datasets import (
ZincDataset, MOADDataset, create_templates_for_linker_generation, get_dataloader, collate
)
from src.linker_size import DistributionNodes
from src.molecule_builder import build_molecules
from src.visualizer import save_xyz_file, visualize_chain
from typing import Dict, List, Optional
from tqdm import tqdm
from pdb import set_trace
def get_activation(activation):
if activation == 'silu':
return torch.nn.SiLU()
else:
raise Exception("activation fn not supported yet. Add it here.")
class DDPM(pl.LightningModule):
train_dataset = None
val_dataset = None
test_dataset = None
starting_epoch = None
metrics: Dict[str, List[float]] = {}
FRAMES = 100
def __init__(
self,
in_node_nf, n_dims, context_node_nf, hidden_nf, activation, tanh, n_layers, attention, norm_constant,
inv_sublayers, sin_embedding, normalization_factor, aggregation_method,
diffusion_steps, diffusion_noise_schedule, diffusion_noise_precision, diffusion_loss_type,
normalize_factors, include_charges, model,
data_path, train_data_prefix, val_data_prefix, batch_size, lr, torch_device, test_epochs, n_stability_samples,
normalization=None, log_iterations=None, samples_dir=None, data_augmentation=False,
center_of_mass='fragments', inpainting=False, anchors_context=True, graph_type=None,
):
super(DDPM, self).__init__()
self.save_hyperparameters()
self.data_path = data_path
self.train_data_prefix = train_data_prefix
self.val_data_prefix = val_data_prefix
self.batch_size = batch_size
self.lr = lr
self.torch_device = torch_device
self.include_charges = include_charges
self.test_epochs = test_epochs
self.n_stability_samples = n_stability_samples
self.log_iterations = log_iterations
self.samples_dir = samples_dir
self.data_augmentation = data_augmentation
self.center_of_mass = center_of_mass
self.inpainting = inpainting
self.loss_type = diffusion_loss_type
self.n_dims = n_dims
self.num_classes = in_node_nf - include_charges
self.include_charges = include_charges
self.anchors_context = anchors_context
self.is_geom = ('geom' in self.train_data_prefix) or ('MOAD' in self.train_data_prefix)
if graph_type is None:
graph_type = '4A' if '.' in train_data_prefix else 'FC'
if type(activation) is str:
activation = get_activation(activation)
dynamics_class = DynamicsWithPockets if '.' in train_data_prefix else Dynamics
dynamics = dynamics_class(
in_node_nf=in_node_nf,
n_dims=n_dims,
context_node_nf=context_node_nf,
device=torch_device,
hidden_nf=hidden_nf,
activation=activation,
n_layers=n_layers,
attention=attention,
tanh=tanh,
norm_constant=norm_constant,
inv_sublayers=inv_sublayers,
sin_embedding=sin_embedding,
normalization_factor=normalization_factor,
aggregation_method=aggregation_method,
model=model,
normalization=normalization,
centering=inpainting,
graph_type=graph_type,
)
edm_class = InpaintingEDM if inpainting else EDM
self.edm = edm_class(
dynamics=dynamics,
in_node_nf=in_node_nf,
n_dims=n_dims,
timesteps=diffusion_steps,
noise_schedule=diffusion_noise_schedule,
noise_precision=diffusion_noise_precision,
loss_type=diffusion_loss_type,
norm_values=normalize_factors,
)
self.linker_size_sampler = DistributionNodes(LINKER_SIZE_DIST)
def setup(self, stage: Optional[str] = None):
dataset_type = MOADDataset if '.' in self.train_data_prefix else ZincDataset
if stage == 'fit':
self.is_geom = ('geom' in self.train_data_prefix) or ('MOAD' in self.train_data_prefix)
self.train_dataset = dataset_type(
data_path=self.data_path,
prefix=self.train_data_prefix,
device=self.torch_device
)
self.val_dataset = dataset_type(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
elif stage == 'val':
self.is_geom = ('geom' in self.val_data_prefix) or ('MOAD' in self.val_data_prefix)
self.val_dataset = dataset_type(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
else:
raise NotImplementedError
def train_dataloader(self, collate_fn=collate):
return get_dataloader(self.train_dataset, self.batch_size, collate_fn=collate_fn, shuffle=True)
def val_dataloader(self, collate_fn=collate):
return get_dataloader(self.val_dataset, self.batch_size, collate_fn=collate_fn)
def test_dataloader(self, collate_fn=collate):
return get_dataloader(self.test_dataset, self.batch_size, collate_fn=collate_fn)
def forward(self, data, training):
x = data['positions']
h = data['one_hot']
node_mask = data['atom_mask']
edge_mask = data['edge_mask']
anchors = data['anchors']
fragment_mask = data['fragment_mask']
linker_mask = data['linker_mask']
# Anchors and fragments labels are used as context
if self.anchors_context:
context = torch.cat([anchors, fragment_mask], dim=-1)
else:
context = fragment_mask
# Add information about pocket to the context
if isinstance(self.train_dataset, MOADDataset):
fragment_pocket_mask = fragment_mask
fragment_only_mask = data['fragment_only_mask']
pocket_only_mask = fragment_pocket_mask - fragment_only_mask
if self.anchors_context:
context = torch.cat([anchors, fragment_only_mask, pocket_only_mask], dim=-1)
else:
context = torch.cat([fragment_only_mask, pocket_only_mask], dim=-1)
# Removing COM of fragment from the atom coordinates
if self.inpainting:
center_of_mass_mask = node_mask
elif isinstance(self.train_dataset, MOADDataset) and self.center_of_mass == 'fragments':
center_of_mass_mask = data['fragment_only_mask']
elif self.center_of_mass == 'fragments':
center_of_mass_mask = fragment_mask
elif self.center_of_mass == 'anchors':
center_of_mass_mask = anchors
else:
raise NotImplementedError(self.center_of_mass)
x = utils.remove_partial_mean_with_mask(x, node_mask, center_of_mass_mask)
utils.assert_partial_mean_zero_with_mask(x, node_mask, center_of_mass_mask)
# Applying random rotation
if training and self.data_augmentation:
x = utils.random_rotation(x)
return self.edm.forward(
x=x,
h=h,
node_mask=node_mask,
fragment_mask=fragment_mask,
linker_mask=linker_mask,
edge_mask=edge_mask,
context=context
)
def training_step(self, data, *args):
delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0 = self.forward(data, training=True)
vlb_loss = kl_prior + loss_term_t + loss_term_0 - delta_log_px
if self.loss_type == 'l2':
loss = l2_loss
elif self.loss_type == 'vlb':
loss = vlb_loss
else:
raise NotImplementedError(self.loss_type)
training_metrics = {
'loss': loss,
'delta_log_px': delta_log_px,
'kl_prior': kl_prior,
'loss_term_t': loss_term_t,
'loss_term_0': loss_term_0,
'l2_loss': l2_loss,
'vlb_loss': vlb_loss,
'noise_t': noise_t,
'noise_0': noise_0
}
if self.log_iterations is not None and self.global_step % self.log_iterations == 0:
for metric_name, metric in training_metrics.items():
self.metrics.setdefault(f'{metric_name}/train', []).append(metric)
self.log(f'{metric_name}/train', metric, prog_bar=True)
return training_metrics
def validation_step(self, data, *args):
delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0 = self.forward(data, training=False)
vlb_loss = kl_prior + loss_term_t + loss_term_0 - delta_log_px
if self.loss_type == 'l2':
loss = l2_loss
elif self.loss_type == 'vlb':
loss = vlb_loss
else:
raise NotImplementedError(self.loss_type)
return {
'loss': loss,
'delta_log_px': delta_log_px,
'kl_prior': kl_prior,
'loss_term_t': loss_term_t,
'loss_term_0': loss_term_0,
'l2_loss': l2_loss,
'vlb_loss': vlb_loss,
'noise_t': noise_t,
'noise_0': noise_0
}
def test_step(self, data, *args):
delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0 = self.forward(data, training=False)
vlb_loss = kl_prior + loss_term_t + loss_term_0 - delta_log_px
if self.loss_type == 'l2':
loss = l2_loss
elif self.loss_type == 'vlb':
loss = vlb_loss
else:
raise NotImplementedError(self.loss_type)
return {
'loss': loss,
'delta_log_px': delta_log_px,
'kl_prior': kl_prior,
'loss_term_t': loss_term_t,
'loss_term_0': loss_term_0,
'l2_loss': l2_loss,
'vlb_loss': vlb_loss,
'noise_t': noise_t,
'noise_0': noise_0
}
def training_epoch_end(self, training_step_outputs):
for metric in training_step_outputs[0].keys():
avg_metric = self.aggregate_metric(training_step_outputs, metric)
self.metrics.setdefault(f'{metric}/train', []).append(avg_metric)
self.log(f'{metric}/train', avg_metric, prog_bar=True)
def validation_epoch_end(self, validation_step_outputs):
for metric in validation_step_outputs[0].keys():
avg_metric = self.aggregate_metric(validation_step_outputs, metric)
self.metrics.setdefault(f'{metric}/val', []).append(avg_metric)
self.log(f'{metric}/val', avg_metric, prog_bar=True)
if (self.current_epoch + 1) % self.test_epochs == 0:
sampling_results = self.sample_and_analyze(self.val_dataloader())
for metric_name, metric_value in sampling_results.items():
self.log(f'{metric_name}/val', metric_value, prog_bar=True)
self.metrics.setdefault(f'{metric_name}/val', []).append(metric_value)
# Logging the results corresponding to the best validation_and_connectivity
best_metrics, best_epoch = self.compute_best_validation_metrics()
self.log('best_epoch', int(best_epoch), prog_bar=True, batch_size=self.batch_size)
for metric, value in best_metrics.items():
self.log(f'best_{metric}', value, prog_bar=True, batch_size=self.batch_size)
def test_epoch_end(self, test_step_outputs):
for metric in test_step_outputs[0].keys():
avg_metric = self.aggregate_metric(test_step_outputs, metric)
self.metrics.setdefault(f'{metric}/test', []).append(avg_metric)
self.log(f'{metric}/test', avg_metric, prog_bar=True)
if (self.current_epoch + 1) % self.test_epochs == 0:
sampling_results = self.sample_and_analyze(self.test_dataloader())
for metric_name, metric_value in sampling_results.items():
self.log(f'{metric_name}/test', metric_value, prog_bar=True)
self.metrics.setdefault(f'{metric_name}/test', []).append(metric_value)
def generate_animation(self, chain_batch, node_mask, batch_i):
batch_indices, mol_indices = utils.get_batch_idx_for_animation(self.batch_size, batch_i)
for bi, mi in zip(batch_indices, mol_indices):
chain = chain_batch[:, bi, :, :]
name = f'mol_{mi}'
chain_output = os.path.join(self.samples_dir, f'epoch_{self.current_epoch}', name)
os.makedirs(chain_output, exist_ok=True)
one_hot = chain[:, :, 3:-1] if self.include_charges else chain[:, :, 3:]
positions = chain[:, :, :3]
chain_node_mask = torch.cat([node_mask[bi].unsqueeze(0) for _ in range(self.FRAMES)], dim=0)
names = [f'{name}_{j}' for j in range(self.FRAMES)]
save_xyz_file(chain_output, one_hot, positions, chain_node_mask, names=names, is_geom=self.is_geom)
visualize_chain(chain_output, wandb=wandb, mode=name, is_geom=self.is_geom)
def sample_and_analyze(self, dataloader):
pred_molecules = []
true_molecules = []
true_fragments = []
for b, data in tqdm(enumerate(dataloader), total=len(dataloader), desc='Sampling'):
atom_mask = data['atom_mask']
fragment_mask = data['fragment_mask']
# Save molecules without pockets
if '.' in self.train_data_prefix:
atom_mask = data['atom_mask'] - data['pocket_mask']
fragment_mask = data['fragment_only_mask']
true_molecules_batch = build_molecules(
data['one_hot'],
data['positions'],
atom_mask,
is_geom=self.is_geom,
)
true_fragments_batch = build_molecules(
data['one_hot'],
data['positions'],
fragment_mask,
is_geom=self.is_geom,
)
for sample_idx in tqdm(range(self.n_stability_samples)):
try:
chain_batch, node_mask = self.sample_chain(data, keep_frames=self.FRAMES)
except utils.FoundNaNException as e:
for idx in e.x_h_nan_idx:
smiles = data['name'][idx]
print(f'FoundNaNException: [xh], e={self.current_epoch}, b={b}, i={idx}: {smiles}')
for idx in e.only_x_nan_idx:
smiles = data['name'][idx]
print(f'FoundNaNException: [x ], e={self.current_epoch}, b={b}, i={idx}: {smiles}')
for idx in e.only_h_nan_idx:
smiles = data['name'][idx]
print(f'FoundNaNException: [ h], e={self.current_epoch}, b={b}, i={idx}: {smiles}')
continue
# Get final molecules from chains β for computing metrics
x, h = utils.split_features(
z=chain_batch[0],
n_dims=self.n_dims,
num_classes=self.num_classes,
include_charges=self.include_charges,
)
# Save molecules without pockets
if '.' in self.train_data_prefix:
node_mask = node_mask - data['pocket_mask']
one_hot = h['categorical']
pred_molecules_batch = build_molecules(one_hot, x, node_mask, is_geom=self.is_geom)
# Adding only results for valid ground truth molecules
for pred_mol, true_mol, frag in zip(pred_molecules_batch, true_molecules_batch, true_fragments_batch):
if metrics.is_valid(true_mol):
pred_molecules.append(pred_mol)
true_molecules.append(true_mol)
true_fragments.append(frag)
# Generate animation β will always do it for molecules with idx 0, 110 and 360
if self.samples_dir is not None and sample_idx == 0:
self.generate_animation(chain_batch=chain_batch, node_mask=node_mask, batch_i=b)
# Our own & DeLinker metrics
our_metrics = metrics.compute_metrics(
pred_molecules=pred_molecules,
true_molecules=true_molecules
)
delinker_metrics = delinker.get_delinker_metrics(
pred_molecules=pred_molecules,
true_molecules=true_molecules,
true_fragments=true_fragments
)
return {
**our_metrics,
**delinker_metrics
}
def sample_chain(self, data, sample_fn=None, keep_frames=None):
if sample_fn is None:
linker_sizes = data['linker_mask'].sum(1).view(-1).int()
else:
linker_sizes = sample_fn(data)
if self.inpainting:
template_data = data
else:
template_data = create_templates_for_linker_generation(data, linker_sizes)
x = template_data['positions']
node_mask = template_data['atom_mask']
edge_mask = template_data['edge_mask']
h = template_data['one_hot']
anchors = template_data['anchors']
fragment_mask = template_data['fragment_mask']
linker_mask = template_data['linker_mask']
# Anchors and fragments labels are used as context
if self.anchors_context:
context = torch.cat([anchors, fragment_mask], dim=-1)
else:
context = fragment_mask
# Add information about pocket to the context
if '.' in self.train_data_prefix:
fragment_pocket_mask = fragment_mask
fragment_only_mask = template_data['fragment_only_mask']
pocket_only_mask = fragment_pocket_mask - fragment_only_mask
if self.anchors_context:
context = torch.cat([anchors, fragment_only_mask, pocket_only_mask], dim=-1)
else:
context = torch.cat([fragment_only_mask, pocket_only_mask], dim=-1)
# Removing COM of fragment from the atom coordinates
if self.inpainting:
center_of_mass_mask = node_mask
elif isinstance(self.val_dataset, MOADDataset) and self.center_of_mass == 'fragments':
center_of_mass_mask = template_data['fragment_only_mask']
elif self.center_of_mass == 'fragments':
center_of_mass_mask = fragment_mask
elif self.center_of_mass == 'anchors':
center_of_mass_mask = anchors
else:
raise NotImplementedError(self.center_of_mass)
x = utils.remove_partial_mean_with_mask(x, node_mask, center_of_mass_mask)
chain = self.edm.sample_chain(
x=x,
h=h,
node_mask=node_mask,
edge_mask=edge_mask,
fragment_mask=fragment_mask,
linker_mask=linker_mask,
context=context,
keep_frames=keep_frames,
)
return chain, node_mask
def configure_optimizers(self):
return torch.optim.AdamW(self.edm.parameters(), lr=self.lr, amsgrad=True, weight_decay=1e-12)
def compute_best_validation_metrics(self):
loss = self.metrics[f'validity_and_connectivity/val']
best_epoch = np.argmax(loss)
best_metrics = {
metric_name: metric_values[best_epoch]
for metric_name, metric_values in self.metrics.items()
if metric_name.endswith('/val')
}
return best_metrics, best_epoch
@staticmethod
def aggregate_metric(step_outputs, metric):
return torch.tensor([out[metric] for out in step_outputs]).mean()
|