Spaces:
Running
on
A10G
Running
on
A10G
File size: 23,362 Bytes
5de53c3 c104a99 5de53c3 7782ac2 b0ab0d5 7782ac2 95ba5bc 52bf9df 95ba5bc d8600ba 95ba5bc abdd514 c104a99 92263a6 ff512d8 d8600ba ff512d8 92263a6 88b37fb 92263a6 88b37fb 92263a6 7782ac2 3c26059 5de53c3 53f22d0 5de53c3 7782ac2 95ba5bc 8fd5e3f 95ba5bc ff9d86b 95ba5bc 92263a6 95ba5bc 0673854 95ba5bc c104a99 b7813c6 c104a99 52bf9df c104a99 52bf9df c104a99 52bf9df c104a99 52bf9df c104a99 52bf9df c104a99 abdd514 c104a99 abdd514 c104a99 abdd514 c104a99 abdd514 52bf9df abdd514 92263a6 c104a99 eb031b7 c104a99 eb031b7 c104a99 eb031b7 abdd514 eb031b7 92263a6 c104a99 eb031b7 6264fac c104a99 abdd514 c104a99 abdd514 c104a99 abdd514 c104a99 abdd514 92263a6 52bf9df 92263a6 52bf9df 7782ac2 0673854 c104a99 7c181a3 3c26059 95ba5bc c104a99 92263a6 95ba5bc c104a99 92263a6 b0ab0d5 f9310fd c104a99 f9310fd 95ba5bc b0ab0d5 92263a6 b0ab0d5 95ba5bc b0ab0d5 95ba5bc abdd514 95ba5bc aa9b17f c1152c1 95ba5bc 92263a6 ff512d8 92263a6 c104a99 92263a6 abdd514 92263a6 c104a99 abdd514 c104a99 abdd514 c104a99 abdd514 c104a99 abdd514 c104a99 abdd514 c104a99 ff512d8 d8600ba c104a99 4d1ca7b c104a99 ff512d8 c104a99 ff512d8 abdd514 ff512d8 abdd514 c104a99 abdd514 c104a99 abdd514 3c26059 4f94923 abdd514 92263a6 abdd514 92263a6 4f94923 7782ac2 52e7c95 bec2844 7782ac2 711f689 c104a99 52bf9df 6c034b2 dcb9a82 c104a99 ff512d8 c1152c1 4d1ca7b c1152c1 abdd514 7a6d6dd c104a99 a68ab98 c104a99 05a5783 05e91b8 f1c7e08 52bf9df ed144d4 76db25b 52bf9df f58a645 92263a6 abdd514 92263a6 abdd514 7a7c7ad f6ae66a abdd514 7a7c7ad eb031b7 52bf9df c104a99 52bf9df c104a99 92263a6 c1152c1 c104a99 52bf9df 7a6d6dd c104a99 05e91b8 abdd514 0ce499b 6f4a6fd abdd514 92263a6 6f4a6fd abdd514 6264fac abdd514 eb031b7 6264fac 92263a6 b7813c6 5de53c3 de1b1df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
import argparse
import shutil
import gradio as gr
import numpy as np
import os
import torch
import output
from rdkit import Chem
from src import const
from src.datasets import (
get_dataloader, collate_with_fragment_edges,
collate_with_fragment_without_pocket_edges,
parse_molecule, MOADDataset
)
from src.lightning import DDPM
from src.linker_size_lightning import SizeClassifier
from src.generation import generate_linkers, try_to_convert_to_sdf, get_pocket
from zipfile import ZipFile
MIN_N_STEPS = 100
MAX_N_STEPS = 500
MAX_BATCH_SIZE = 20
MODELS_METADATA = {
'geom_difflinker': {
'link': 'https://zenodo.org/record/7121300/files/geom_difflinker.ckpt?download=1',
'path': 'models/geom_difflinker.ckpt',
},
'geom_difflinker_given_anchors': {
'link': 'https://zenodo.org/record/7775568/files/geom_difflinker_given_anchors.ckpt?download=1',
'path': 'models/geom_difflinker_given_anchors.ckpt',
},
'pockets_difflinker': {
# 'link': 'https://zenodo.org/record/7775568/files/pockets_difflinker_full_no_anchors.ckpt?download=1',
# 'path': 'models/pockets_difflinker.ckpt',
'link': 'https://zenodo.org/records/10988017/files/pockets_difflinker_full_no_anchors_fc_pdb_excluded.ckpt?download=1',
'path': 'models/pockets_difflinker_full_no_anchors_fc_pdb_excluded.ckpt',
},
'pockets_difflinker_given_anchors': {
# 'link': 'https://zenodo.org/record/7775568/files/pockets_difflinker_full.ckpt?download=1',
# 'path': 'models/pockets_difflinker_given_anchors.ckpt',
'link': 'https://zenodo.org/records/10988017/files/pockets_difflinker_full_fc_pdb_excluded.ckpt?download=1',
'path': 'models/pockets_difflinker_full_fc_pdb_excluded.ckpt',
},
}
parser = argparse.ArgumentParser()
parser.add_argument('--ip', type=str, default=None)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Device: {device}')
os.makedirs("results", exist_ok=True)
size_gnn_path = 'models/geom_size_gnn.ckpt'
size_nn = SizeClassifier.load_from_checkpoint('models/geom_size_gnn.ckpt', map_location=device).eval().to(device)
print('Loaded SizeGNN model')
diffusion_models = {}
for model_name, metadata in MODELS_METADATA.items():
diffusion_path = metadata['path']
diffusion_models[model_name] = DDPM.load_from_checkpoint(diffusion_path, map_location=device).eval().to(device)
print(f'Loaded model {model_name}')
print(os.curdir)
print(os.path.abspath(os.curdir))
print(os.listdir(os.curdir))
def read_molecule_content(path):
with open(path, "r") as f:
return "".join(f.readlines())
def read_molecule(path):
if path.endswith('.pdb'):
return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol'):
return Chem.MolFromMolFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol2'):
return Chem.MolFromMol2File(path, sanitize=False, removeHs=True)
elif path.endswith('.sdf'):
return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0]
raise Exception('Unknown file extension')
def read_molecule_file(in_file, allowed_extentions):
if isinstance(in_file, str):
path = in_file
else:
path = in_file.name
extension = path.split('.')[-1]
if extension not in allowed_extentions:
msg = output.INVALID_FORMAT_MSG.format(extension=extension)
return None, None, msg
try:
mol = read_molecule(path)
except Exception as e:
e = str(e).replace('\'', '')
msg = output.ERROR_FORMAT_MSG.format(message=e)
return None, None, msg
if extension == 'pdb':
content = Chem.MolToPDBBlock(mol)
elif extension in ['mol', 'mol2', 'sdf']:
content = Chem.MolToMolBlock(mol, kekulize=False)
extension = 'mol'
else:
raise NotImplementedError
return content, extension, None
def show_input(in_fragments, in_protein):
vis = ''
if in_fragments is not None and in_protein is None:
vis = show_fragments(in_fragments)
elif in_fragments is None and in_protein is not None:
vis = show_target(in_protein)
elif in_fragments is not None and in_protein is not None:
vis = show_fragments_and_target(in_fragments, in_protein)
return [vis, gr.Dropdown.update(choices=[], value=None, visible=False), None]
def show_fragments(in_fragments):
molecule, extension, html = read_molecule_file(in_fragments, allowed_extentions=['sdf', 'pdb', 'mol', 'mol2'])
if molecule is not None:
html = output.FRAGMENTS_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension)
return output.IFRAME_TEMPLATE.format(html=html)
def show_target(in_protein):
molecule, extension, html = read_molecule_file(in_protein, allowed_extentions=['pdb'])
if molecule is not None:
html = output.TARGET_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension)
return output.IFRAME_TEMPLATE.format(html=html)
def show_fragments_and_target(in_fragments, in_protein):
fragments_molecule, fragments_extension, msg = read_molecule_file(in_fragments, ['sdf', 'pdb', 'mol', 'mol2'])
if fragments_molecule is None:
return output.IFRAME_TEMPLATE.format(html=msg)
target_molecule, target_extension, msg = read_molecule_file(in_protein, allowed_extentions=['pdb'])
if fragments_molecule is None:
return output.IFRAME_TEMPLATE.format(html=msg)
html = output.FRAGMENTS_AND_TARGET_RENDERING_TEMPLATE.format(
molecule=fragments_molecule,
fmt=fragments_extension,
target=target_molecule,
target_fmt=target_extension,
)
return output.IFRAME_TEMPLATE.format(html=html)
def clear_fragments_input(in_protein):
vis = ''
if in_protein is not None:
vis = show_target(in_protein)
return [None, vis, gr.Dropdown.update(choices=[], value=None, visible=False), None]
def clear_protein_input(in_fragments):
vis = ''
if in_fragments is not None:
vis = show_fragments(in_fragments)
return [None, vis, gr.Dropdown.update(choices=[], value=None, visible=False), None]
def click_on_example(example):
fragment_fname, target_fname = example
fragment_path = f'examples/{fragment_fname}' if fragment_fname != '' else None
target_path = f'examples/{target_fname}' if target_fname != '' else None
return [fragment_path, target_path] + show_input(fragment_path, target_path)
def draw_sample(sample_path, out_files, num_samples):
with_protein = (len(out_files) == num_samples + 3)
in_file = out_files[1]
in_sdf = in_file if isinstance(in_file, str) else in_file.name
input_fragments_content = read_molecule_content(in_sdf)
fragments_fmt = in_sdf.split('.')[-1]
offset = 2
input_target_content = None
target_fmt = None
if with_protein:
offset += 1
in_pdb = out_files[2] if isinstance(out_files[2], str) else out_files[2].name
input_target_content = read_molecule_content(in_pdb)
target_fmt = in_pdb.split('.')[-1]
out_sdf = sample_path if isinstance(sample_path, str) else sample_path.name
generated_molecule_content = read_molecule_content(out_sdf)
molecule_fmt = out_sdf.split('.')[-1]
if with_protein:
html = output.SAMPLES_WITH_TARGET_RENDERING_TEMPLATE.format(
fragments=input_fragments_content,
fragments_fmt=fragments_fmt,
molecule=generated_molecule_content,
molecule_fmt=molecule_fmt,
target=input_target_content,
target_fmt=target_fmt,
)
else:
html = output.SAMPLES_RENDERING_TEMPLATE.format(
fragments=input_fragments_content,
fragments_fmt=fragments_fmt,
molecule=generated_molecule_content,
molecule_fmt=molecule_fmt,
)
return output.IFRAME_TEMPLATE.format(html=html)
def compress(output_fnames, name):
archive_path = f'results/all_files_{name}.zip'
with ZipFile(archive_path, 'w') as archive:
for fname in output_fnames:
archive.write(fname)
return archive_path
def generate(in_fragments, in_protein, n_steps, n_atoms, num_samples, selected_atoms):
if in_fragments is None:
return [None, None, None, None]
if in_protein is None:
return generate_without_pocket(in_fragments, n_steps, n_atoms, num_samples, selected_atoms)
else:
return generate_with_pocket(in_fragments, in_protein, n_steps, n_atoms, num_samples, selected_atoms)
def generate_without_pocket(input_file, n_steps, n_atoms, num_samples, selected_atoms):
# Parsing selected atoms (javascript output)
selected_atoms = selected_atoms.strip()
if selected_atoms == '':
selected_atoms = []
else:
selected_atoms = list(map(int, selected_atoms.split(',')))
# Selecting model
if len(selected_atoms) == 0:
selected_model_name = 'geom_difflinker'
else:
selected_model_name = 'geom_difflinker_given_anchors'
print(f'Start generating with model {selected_model_name}, selected_atoms:', selected_atoms)
ddpm = diffusion_models[selected_model_name]
path = input_file.name
extension = path.split('.')[-1]
if extension not in ['sdf', 'pdb', 'mol', 'mol2']:
msg = output.INVALID_FORMAT_MSG.format(extension=extension)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
try:
molecule = read_molecule(path)
try:
molecule = Chem.RemoveAllHs(molecule)
except:
pass
name = '.'.join(path.split('/')[-1].split('.')[:-1])
inp_sdf = f'results/input_{name}.sdf'
except Exception as e:
e = str(e).replace('\'', '')
error = f'Could not read the molecule: {e}'
msg = output.ERROR_FORMAT_MSG.format(message=error)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
if molecule.GetNumAtoms() > 100:
error = f'Too large molecule: upper limit is 100 heavy atoms'
msg = output.ERROR_FORMAT_MSG.format(message=error)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
with Chem.SDWriter(inp_sdf) as w:
w.SetKekulize(False)
w.write(molecule)
positions, one_hot, charges = parse_molecule(molecule, is_geom=True)
anchors = np.zeros_like(charges)
anchors[selected_atoms] = 1
fragment_mask = np.ones_like(charges)
linker_mask = np.zeros_like(charges)
print('Read and parsed molecule')
dataset = [{
'uuid': '0',
'name': '0',
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions),
}] * num_samples
dataloader = get_dataloader(dataset, batch_size=num_samples, collate_fn=collate_with_fragment_edges)
print('Created dataloader')
ddpm.edm.T = n_steps
if n_atoms == 0:
def sample_fn(_data):
out, _ = size_nn.forward(_data, return_loss=False)
probabilities = torch.softmax(out, dim=1)
distribution = torch.distributions.Categorical(probs=probabilities)
samples = distribution.sample()
sizes = []
for label in samples.detach().cpu().numpy():
sizes.append(size_nn.linker_id2size[label])
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long)
return sizes
else:
def sample_fn(_data):
return torch.ones(_data['positions'].shape[0], device=device, dtype=torch.long) * n_atoms
for data in dataloader:
try:
generate_linkers(ddpm=ddpm, data=data, sample_fn=sample_fn, name=name, with_pocket=False)
except Exception as e:
e = str(e).replace('\'', '')
error = f'Caught exception while generating linkers: {e}'
msg = output.ERROR_FORMAT_MSG.format(message=error)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
out_files = try_to_convert_to_sdf(name, num_samples)
out_files = [inp_sdf] + out_files
out_files = [compress(out_files, name=name)] + out_files
choice = out_files[2]
return [
draw_sample(choice, out_files, num_samples),
out_files,
gr.Dropdown.update(
choices=out_files[2:],
value=choice,
visible=True,
),
None
]
def generate_with_pocket(in_fragments, in_protein, n_steps, n_atoms, num_samples, selected_atoms):
# Parsing selected atoms (javascript output)
selected_atoms = selected_atoms.strip()
if selected_atoms == '':
selected_atoms = []
else:
selected_atoms = list(map(int, selected_atoms.split(',')))
# Selecting model
if len(selected_atoms) == 0:
selected_model_name = 'pockets_difflinker'
else:
selected_model_name = 'pockets_difflinker_given_anchors'
print(f'Start generating with model {selected_model_name}, selected_atoms:', selected_atoms)
ddpm = diffusion_models[selected_model_name]
fragments_path = in_fragments.name
fragments_extension = fragments_path.split('.')[-1]
if fragments_extension not in ['sdf', 'pdb', 'mol', 'mol2']:
msg = output.INVALID_FORMAT_MSG.format(extension=fragments_extension)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
protein_path = in_protein.name
protein_extension = protein_path.split('.')[-1]
if protein_extension not in ['pdb']:
msg = output.INVALID_FORMAT_MSG.format(extension=protein_extension)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
try:
fragments_mol = read_molecule(fragments_path)
name = '.'.join(fragments_path.split('/')[-1].split('.')[:-1])
except Exception as e:
e = str(e).replace('\'', '')
error = f'Could not read the molecule: {e}'
msg = output.ERROR_FORMAT_MSG.format(message=error)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
if fragments_mol.GetNumAtoms() > 100:
error = f'Too large molecule: upper limit is 100 heavy atoms'
msg = output.ERROR_FORMAT_MSG.format(message=error)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
inp_sdf = f'results/input_{name}.sdf'
with Chem.SDWriter(inp_sdf) as w:
w.SetKekulize(False)
w.write(fragments_mol)
inp_pdb = f'results/target_{name}.pdb'
shutil.copy(protein_path, inp_pdb)
frag_pos, frag_one_hot, frag_charges = parse_molecule(fragments_mol, is_geom=True)
pocket_pos, pocket_one_hot, pocket_charges = get_pocket(fragments_mol, protein_path)
print(f'Detected pocket with {len(pocket_pos)} atoms')
positions = np.concatenate([frag_pos, pocket_pos], axis=0)
one_hot = np.concatenate([frag_one_hot, pocket_one_hot], axis=0)
charges = np.concatenate([frag_charges, pocket_charges], axis=0)
anchors = np.zeros_like(charges)
anchors[selected_atoms] = 1
fragment_only_mask = np.concatenate([
np.ones_like(frag_charges),
np.zeros_like(pocket_charges),
])
pocket_mask = np.concatenate([
np.zeros_like(frag_charges),
np.ones_like(pocket_charges),
])
linker_mask = np.concatenate([
np.zeros_like(frag_charges),
np.zeros_like(pocket_charges),
])
fragment_mask = np.concatenate([
np.ones_like(frag_charges),
np.ones_like(pocket_charges),
])
print('Read and parsed molecule')
dataset = [{
'uuid': '0',
'name': '0',
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device),
'fragment_only_mask': torch.tensor(fragment_only_mask, dtype=const.TORCH_FLOAT, device=device),
'pocket_mask': torch.tensor(pocket_mask, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions),
}] * num_samples
dataset = MOADDataset(data=dataset)
ddpm.val_dataset = dataset
batch_size = min(num_samples, MAX_BATCH_SIZE)
dataloader = get_dataloader(dataset, batch_size=batch_size, collate_fn=collate_with_fragment_without_pocket_edges)
print('Created dataloader')
ddpm.edm.T = n_steps
if n_atoms == 0:
def sample_fn(_data):
out, _ = size_nn.forward(_data, return_loss=False, with_pocket=True)
probabilities = torch.softmax(out, dim=1)
distribution = torch.distributions.Categorical(probs=probabilities)
samples = distribution.sample()
sizes = []
for label in samples.detach().cpu().numpy():
sizes.append(size_nn.linker_id2size[label])
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long)
return sizes
else:
def sample_fn(_data):
return torch.ones(_data['positions'].shape[0], device=device, dtype=torch.long) * n_atoms
for batch_i, data in enumerate(dataloader):
try:
offset_idx = batch_i * batch_size
generate_linkers(
ddpm=ddpm, data=data,
sample_fn=sample_fn, name=name, with_pocket=True,
offset_idx=offset_idx,
)
except Exception as e:
e = str(e).replace('\'', '')
error = f'Caught exception while generating linkers: {e}'
msg = output.ERROR_FORMAT_MSG.format(message=error)
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None]
out_files = try_to_convert_to_sdf(name, num_samples)
out_files = [inp_sdf, inp_pdb] + out_files
out_files = [compress(out_files, name=name)] + out_files
choice = out_files[3]
return [
draw_sample(choice, out_files, num_samples),
out_files,
gr.Dropdown.update(
choices=out_files[3:],
value=choice,
visible=True,
),
None
]
demo = gr.Blocks()
with demo:
gr.Markdown('# DiffLinker: Equivariant 3D-Conditional Diffusion Model for Molecular Linker Design')
gr.Markdown(
'Given a set of disconnected fragments in 3D, '
'DiffLinker places missing atoms in between and designs a molecule incorporating all the initial fragments. '
'Our method can link an arbitrary number of fragments, requires no information on the attachment atoms '
'and linker size, and can be conditioned on the protein pockets.'
)
gr.Markdown(
'[**[Paper]**](https://arxiv.org/abs/2210.05274) '
'[**[Code]**](https://github.com/igashov/DiffLinker)'
)
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown('## Input')
gr.Markdown('Upload the file with 3D-coordinates of the input fragments in .pdb, .mol2 or .sdf format:')
input_fragments_file = gr.File(file_count='single', label='Input Fragments')
gr.Markdown('Upload the file of the target protein in .pdb format (optionally):')
input_protein_file = gr.File(file_count='single', label='Target Protein (Optional)')
n_steps = gr.Slider(
minimum=MIN_N_STEPS, maximum=MAX_N_STEPS,
label="Number of Denoising Steps", step=10
)
n_atoms = gr.Slider(
minimum=0, maximum=20,
label="Linker Size: DiffLinker will predict it if set to 0",
step=1
)
n_samples = gr.Slider(minimum=5, maximum=50, label="Number of Samples", step=5)
examples = gr.Dataset(
components=[gr.File(visible=False), gr.File(visible=False)],
samples=[
['examples/example_1.sdf', ''],
['examples/example_2.sdf', ''],
['examples/3hz1_fragments.sdf', 'examples/3hz1_protein.pdb'],
['examples/5ou2_fragments.sdf', 'examples/5ou2_protein.pdb'],
],
type='values',
headers=['Input Fragments', 'Target Protein'],
)
button = gr.Button('Generate Linker!')
gr.Markdown('')
gr.Markdown('## Output Files')
gr.Markdown('Download files with the generated molecules here:')
output_files = gr.File(file_count='multiple', label='Output Files', interactive=False)
hidden = gr.Textbox(visible=False)
with gr.Column():
gr.Markdown('## Visualization')
gr.Markdown('**Hint:** click on atoms to select anchor points (optionally)')
samples = gr.Dropdown(
choices=[],
value=None,
type='value',
multiselect=False,
visible=False,
interactive=True,
label='Samples'
)
visualization = gr.HTML()
input_fragments_file.change(
fn=show_input,
inputs=[input_fragments_file, input_protein_file],
outputs=[visualization, samples, hidden],
)
input_protein_file.change(
fn=show_input,
inputs=[input_fragments_file, input_protein_file],
outputs=[visualization, samples, hidden],
)
input_fragments_file.clear(
fn=clear_fragments_input,
inputs=[input_protein_file],
outputs=[input_fragments_file, visualization, samples, hidden],
)
input_protein_file.clear(
fn=clear_protein_input,
inputs=[input_fragments_file],
outputs=[input_protein_file, visualization, samples, hidden],
)
examples.click(
fn=click_on_example,
inputs=[examples],
outputs=[input_fragments_file, input_protein_file, visualization, samples, hidden]
)
button.click(
fn=generate,
inputs=[input_fragments_file, input_protein_file, n_steps, n_atoms, n_samples, hidden],
outputs=[visualization, output_files, samples, hidden],
_js=output.RETURN_SELECTION_JS,
)
samples.select(
fn=draw_sample,
inputs=[samples, output_files, n_samples],
outputs=[visualization],
)
demo.load(_js=output.STARTUP_JS)
demo.launch(server_name=args.ip)
|