Spaces:
Sleeping
Sleeping
import argparse | |
import gradio as gr | |
import numpy as np | |
import os | |
import torch | |
import subprocess | |
import output | |
from rdkit import Chem | |
from src import const | |
from src.visualizer import save_xyz_file | |
from src.datasets import get_dataloader, collate_with_fragment_edges, parse_molecule | |
from src.lightning import DDPM | |
from src.linker_size_lightning import SizeClassifier | |
N_SAMPLES = 5 | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--ip', type=str, default=None) | |
args = parser.parse_args() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
os.makedirs("results", exist_ok=True) | |
os.makedirs("models", exist_ok=True) | |
size_gnn_path = 'models/geom_size_gnn.ckpt' | |
if not os.path.exists(size_gnn_path): | |
print('Downloading SizeGNN model...') | |
link = 'https://zenodo.org/record/7121300/files/geom_size_gnn.ckpt?download=1' | |
subprocess.run(f'wget {link} -O {size_gnn_path}', shell=True) | |
size_nn = SizeClassifier.load_from_checkpoint('models/geom_size_gnn.ckpt', map_location=device).eval().to(device) | |
print('Loaded SizeGNN model') | |
diffusion_path = 'models/geom_difflinker.ckpt' | |
if not os.path.exists(diffusion_path): | |
print('Downloading Diffusion model...') | |
link = 'https://zenodo.org/record/7121300/files/geom_difflinker.ckpt?download=1' | |
subprocess.run(f'wget {link} -O {diffusion_path}', shell=True) | |
ddpm = DDPM.load_from_checkpoint('models/geom_difflinker.ckpt', map_location=device).eval().to(device) | |
print('Loaded diffusion model') | |
def sample_fn(_data): | |
output, _ = size_nn.forward(_data, return_loss=False) | |
probabilities = torch.softmax(output, dim=1) | |
distribution = torch.distributions.Categorical(probs=probabilities) | |
samples = distribution.sample() | |
sizes = [] | |
for label in samples.detach().cpu().numpy(): | |
sizes.append(size_nn.linker_id2size[label]) | |
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long) | |
return sizes | |
def read_molecule_content(path): | |
with open(path, "r") as f: | |
return "".join(f.readlines()) | |
def read_molecule(path): | |
if path.endswith('.pdb'): | |
return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True) | |
elif path.endswith('.mol'): | |
return Chem.MolFromMolFile(path, sanitize=False, removeHs=True) | |
elif path.endswith('.mol2'): | |
return Chem.MolFromMol2File(path, sanitize=False, removeHs=True) | |
elif path.endswith('.sdf'): | |
return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0] | |
raise Exception('Unknown file extension') | |
def show_input(input_file): | |
if input_file is None: | |
return '' | |
if isinstance(input_file, str): | |
path = input_file | |
else: | |
path = input_file.name | |
extension = path.split('.')[-1] | |
if extension not in ['sdf', 'pdb', 'mol', 'mol2']: | |
msg = output.INVALID_FORMAT_MSG.format(extension=extension) | |
return output.IFRAME_TEMPLATE.format(html=msg) | |
try: | |
molecule = read_molecule_content(path) | |
except Exception as e: | |
return f'Could not read the molecule: {e}' | |
html = output.INITIAL_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension) | |
return output.IFRAME_TEMPLATE.format(html=html) | |
def draw_sample(idx, output_files): | |
print(idx) | |
print(output_files) | |
print(output_files[0].name) | |
return | |
def generate(input_file): | |
if input_file is None: | |
return '' | |
path = input_file.name | |
extension = path.split('.')[-1] | |
if extension not in ['sdf', 'pdb', 'mol', 'mol2']: | |
msg = output.INVALID_FORMAT_MSG.format(extension=extension) | |
return output.IFRAME_TEMPLATE.format(html=msg) | |
try: | |
molecule = read_molecule(path) | |
molecule = Chem.RemoveAllHs(molecule) | |
name = '.'.join(path.split('/')[-1].split('.')[:-1]) | |
inp_sdf = f'results/input_{name}.sdf' | |
except Exception as e: | |
return f'Could not read the molecule: {e}' | |
if molecule.GetNumAtoms() > 50: | |
return f'Too large molecule: upper limit is 50 heavy atoms' | |
with Chem.SDWriter(inp_sdf) as w: | |
w.write(molecule) | |
positions, one_hot, charges = parse_molecule(molecule, is_geom=True) | |
anchors = np.zeros_like(charges) | |
fragment_mask = np.ones_like(charges) | |
linker_mask = np.zeros_like(charges) | |
print('Read and parsed molecule') | |
dataset = [{ | |
'uuid': '0', | |
'name': '0', | |
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device), | |
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device), | |
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device), | |
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device), | |
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device), | |
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device), | |
'num_atoms': len(positions), | |
}] * N_SAMPLES | |
dataloader = get_dataloader(dataset, batch_size=N_SAMPLES, collate_fn=collate_with_fragment_edges) | |
print('Created dataloader') | |
for data in dataloader: | |
chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1) | |
print('Generated linker') | |
x = chain[0][:, :, :ddpm.n_dims] | |
h = chain[0][:, :, ddpm.n_dims:] | |
names = [f'output_{i+1}_{name}' for i in range(N_SAMPLES)] | |
save_xyz_file('results', h, x, node_mask, names=names, is_geom=True, suffix='') | |
print('Saved XYZ files') | |
break | |
out_files = [] | |
for i in range(N_SAMPLES): | |
out_xyz = f'results/output_{i+1}_{name}_.xyz' | |
out_sdf = f'results/output_{i+1}_{name}_.sdf' | |
subprocess.run(f'obabel {out_xyz} -O {out_sdf}', shell=True) | |
out_files.append(out_sdf) | |
print('Converted to SDF') | |
out_sdf = f'results/output_1_{name}_.sdf' | |
input_fragments_content = read_molecule_content(inp_sdf) | |
generated_molecule_content = read_molecule_content(out_sdf) | |
html = output.SAMPLES_RENDERING_TEMPLATE.format( | |
fragments=input_fragments_content, | |
fragments_fmt='sdf', | |
molecule=generated_molecule_content, | |
molecule_fmt='sdf', | |
) | |
return [ | |
output.IFRAME_TEMPLATE.format(html=html), | |
[inp_sdf] + out_files, | |
gr.Radio.update( | |
choices=['Sample 1', 'Sample 2', 'Sample 3', 'Sample 4', 'Sample 5'], | |
value='Sample 1', | |
) | |
] | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown('# DiffLinker: Equivariant 3D-Conditional Diffusion Model for Molecular Linker Design') | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown('## Input Fragments') | |
gr.Markdown('Upload the file with 3D-coordinates of the input fragments in .pdb, .mol2 or .sdf format:') | |
input_file = gr.File(file_count='single', label='Input Fragments') | |
examples = gr.Dataset( | |
components=[gr.File(visible=False)], | |
samples=[['examples/example_1.sdf'], ['examples/example_2.sdf']], | |
type='index', | |
) | |
button = gr.Button('Generate Linker!') | |
gr.Markdown('') | |
gr.Markdown('## Output Files') | |
gr.Markdown('Download files with the generated molecules here:') | |
output_files = gr.File(file_count='multiple', label='Output Files') | |
with gr.Column(): | |
gr.Markdown('## Visualization') | |
gr.Markdown('Below you will see input and output molecules') | |
visualization = gr.HTML() | |
samples = gr.Radio(interactive=True, type='index', label='Samples') | |
input_file.change( | |
fn=show_input, | |
inputs=[input_file], | |
outputs=[visualization], | |
) | |
examples.click( | |
fn=lambda idx: [f'examples/example_{idx+1}.sdf', show_input(f'examples/example_{idx+1}.sdf')], | |
inputs=[examples], | |
outputs=[input_file, visualization] | |
) | |
button.click( | |
fn=generate, | |
inputs=[input_file], | |
outputs=[visualization, output_files, samples], | |
) | |
samples.change( | |
fn=draw_sample, | |
inputs=[samples, output_files], | |
outputs=[], | |
) | |
demo.launch(server_name=args.ip) | |