Spaces:
Sleeping
Sleeping
import argparse | |
import shutil | |
import gradio as gr | |
import numpy as np | |
import os | |
import torch | |
import output | |
from rdkit import Chem | |
from src import const | |
from src.datasets import ( | |
get_dataloader, collate_with_fragment_edges, | |
collate_with_fragment_without_pocket_edges, | |
parse_molecule, MOADDataset | |
) | |
from src.lightning import DDPM | |
from src.linker_size_lightning import SizeClassifier | |
from src.generation import generate_linkers, try_to_convert_to_sdf, get_pocket | |
from zipfile import ZipFile | |
MIN_N_STEPS = 100 | |
MAX_N_STEPS = 500 | |
MAX_BATCH_SIZE = 20 | |
MODELS_METADATA = { | |
'geom_difflinker': { | |
'link': 'https://zenodo.org/record/7121300/files/geom_difflinker.ckpt?download=1', | |
'path': 'models/geom_difflinker.ckpt', | |
}, | |
'geom_difflinker_given_anchors': { | |
'link': 'https://zenodo.org/record/7775568/files/geom_difflinker_given_anchors.ckpt?download=1', | |
'path': 'models/geom_difflinker_given_anchors.ckpt', | |
}, | |
'pockets_difflinker': { | |
'link': 'https://zenodo.org/record/7775568/files/pockets_difflinker_full_no_anchors.ckpt?download=1', | |
'path': 'models/pockets_difflinker.ckpt', | |
}, | |
'pockets_difflinker_given_anchors': { | |
'link': 'https://zenodo.org/record/7775568/files/pockets_difflinker_full.ckpt?download=1', | |
'path': 'models/pockets_difflinker_given_anchors.ckpt', | |
}, | |
} | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--ip', type=str, default=None) | |
args = parser.parse_args() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f'Device: {device}') | |
os.makedirs("results", exist_ok=True) | |
size_gnn_path = 'models/geom_size_gnn.ckpt' | |
size_nn = SizeClassifier.load_from_checkpoint('models/geom_size_gnn.ckpt', map_location=device).eval().to(device) | |
print('Loaded SizeGNN model') | |
diffusion_models = {} | |
for model_name, metadata in MODELS_METADATA.items(): | |
diffusion_path = metadata['path'] | |
diffusion_models[model_name] = DDPM.load_from_checkpoint(diffusion_path, map_location=device).eval().to(device) | |
print(f'Loaded model {model_name}') | |
print(os.curdir) | |
print(os.path.abspath(os.curdir)) | |
print(os.listdir(os.curdir)) | |
def read_molecule_content(path): | |
with open(path, "r") as f: | |
return "".join(f.readlines()) | |
def read_molecule(path): | |
if path.endswith('.pdb'): | |
return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True) | |
elif path.endswith('.mol'): | |
return Chem.MolFromMolFile(path, sanitize=False, removeHs=True) | |
elif path.endswith('.mol2'): | |
return Chem.MolFromMol2File(path, sanitize=False, removeHs=True) | |
elif path.endswith('.sdf'): | |
return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0] | |
raise Exception('Unknown file extension') | |
def read_molecule_file(in_file, allowed_extentions): | |
if isinstance(in_file, str): | |
path = in_file | |
else: | |
path = in_file.name | |
extension = path.split('.')[-1] | |
if extension not in allowed_extentions: | |
msg = output.INVALID_FORMAT_MSG.format(extension=extension) | |
return None, None, msg | |
try: | |
mol = read_molecule(path) | |
except Exception as e: | |
e = str(e).replace('\'', '') | |
msg = output.ERROR_FORMAT_MSG.format(message=e) | |
return None, None, msg | |
if extension == 'pdb': | |
content = Chem.MolToPDBBlock(mol) | |
elif extension in ['mol', 'mol2', 'sdf']: | |
content = Chem.MolToMolBlock(mol, kekulize=False) | |
extension = 'mol' | |
else: | |
raise NotImplementedError | |
return content, extension, None | |
def show_input(in_fragments, in_protein): | |
vis = '' | |
if in_fragments is not None and in_protein is None: | |
vis = show_fragments(in_fragments) | |
elif in_fragments is None and in_protein is not None: | |
vis = show_target(in_protein) | |
elif in_fragments is not None and in_protein is not None: | |
vis = show_fragments_and_target(in_fragments, in_protein) | |
return [vis, gr.Dropdown.update(choices=[], value=None, visible=False), None] | |
def show_fragments(in_fragments): | |
molecule, extension, html = read_molecule_file(in_fragments, allowed_extentions=['sdf', 'pdb', 'mol', 'mol2']) | |
if molecule is not None: | |
html = output.FRAGMENTS_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension) | |
return output.IFRAME_TEMPLATE.format(html=html) | |
def show_target(in_protein): | |
molecule, extension, html = read_molecule_file(in_protein, allowed_extentions=['pdb']) | |
if molecule is not None: | |
html = output.TARGET_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension) | |
return output.IFRAME_TEMPLATE.format(html=html) | |
def show_fragments_and_target(in_fragments, in_protein): | |
fragments_molecule, fragments_extension, msg = read_molecule_file(in_fragments, ['sdf', 'pdb', 'mol', 'mol2']) | |
if fragments_molecule is None: | |
return output.IFRAME_TEMPLATE.format(html=msg) | |
target_molecule, target_extension, msg = read_molecule_file(in_protein, allowed_extentions=['pdb']) | |
if fragments_molecule is None: | |
return output.IFRAME_TEMPLATE.format(html=msg) | |
html = output.FRAGMENTS_AND_TARGET_RENDERING_TEMPLATE.format( | |
molecule=fragments_molecule, | |
fmt=fragments_extension, | |
target=target_molecule, | |
target_fmt=target_extension, | |
) | |
return output.IFRAME_TEMPLATE.format(html=html) | |
def clear_fragments_input(in_protein): | |
vis = '' | |
if in_protein is not None: | |
vis = show_target(in_protein) | |
return [None, vis, gr.Dropdown.update(choices=[], value=None, visible=False), None] | |
def clear_protein_input(in_fragments): | |
vis = '' | |
if in_fragments is not None: | |
vis = show_fragments(in_fragments) | |
return [None, vis, gr.Dropdown.update(choices=[], value=None, visible=False), None] | |
def click_on_example(example): | |
fragment_fname, target_fname = example | |
fragment_path = f'examples/{fragment_fname}' if fragment_fname != '' else None | |
target_path = f'examples/{target_fname}' if target_fname != '' else None | |
return [fragment_path, target_path] + show_input(fragment_path, target_path) | |
def draw_sample(sample_path, out_files, num_samples): | |
with_protein = (len(out_files) == num_samples + 3) | |
in_file = out_files[1] | |
in_sdf = in_file if isinstance(in_file, str) else in_file.name | |
input_fragments_content = read_molecule_content(in_sdf) | |
fragments_fmt = in_sdf.split('.')[-1] | |
offset = 2 | |
input_target_content = None | |
target_fmt = None | |
if with_protein: | |
offset += 1 | |
in_pdb = out_files[2] if isinstance(out_files[2], str) else out_files[2].name | |
input_target_content = read_molecule_content(in_pdb) | |
target_fmt = in_pdb.split('.')[-1] | |
out_sdf = sample_path if isinstance(sample_path, str) else sample_path.name | |
generated_molecule_content = read_molecule_content(out_sdf) | |
molecule_fmt = out_sdf.split('.')[-1] | |
if with_protein: | |
html = output.SAMPLES_WITH_TARGET_RENDERING_TEMPLATE.format( | |
fragments=input_fragments_content, | |
fragments_fmt=fragments_fmt, | |
molecule=generated_molecule_content, | |
molecule_fmt=molecule_fmt, | |
target=input_target_content, | |
target_fmt=target_fmt, | |
) | |
else: | |
html = output.SAMPLES_RENDERING_TEMPLATE.format( | |
fragments=input_fragments_content, | |
fragments_fmt=fragments_fmt, | |
molecule=generated_molecule_content, | |
molecule_fmt=molecule_fmt, | |
) | |
return output.IFRAME_TEMPLATE.format(html=html) | |
def compress(output_fnames, name): | |
archive_path = f'results/all_files_{name}.zip' | |
with ZipFile(archive_path, 'w') as archive: | |
for fname in output_fnames: | |
archive.write(fname) | |
return archive_path | |
def generate(in_fragments, in_protein, n_steps, n_atoms, num_samples, selected_atoms): | |
if in_fragments is None: | |
return [None, None, None, None] | |
if in_protein is None: | |
return generate_without_pocket(in_fragments, n_steps, n_atoms, num_samples, selected_atoms) | |
else: | |
return generate_with_pocket(in_fragments, in_protein, n_steps, n_atoms, num_samples, selected_atoms) | |
def generate_without_pocket(input_file, n_steps, n_atoms, num_samples, selected_atoms): | |
# Parsing selected atoms (javascript output) | |
selected_atoms = selected_atoms.strip() | |
if selected_atoms == '': | |
selected_atoms = [] | |
else: | |
selected_atoms = list(map(int, selected_atoms.split(','))) | |
# Selecting model | |
if len(selected_atoms) == 0: | |
selected_model_name = 'geom_difflinker' | |
else: | |
selected_model_name = 'geom_difflinker_given_anchors' | |
print(f'Start generating with model {selected_model_name}, selected_atoms:', selected_atoms) | |
ddpm = diffusion_models[selected_model_name] | |
path = input_file.name | |
extension = path.split('.')[-1] | |
if extension not in ['sdf', 'pdb', 'mol', 'mol2']: | |
msg = output.INVALID_FORMAT_MSG.format(extension=extension) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
try: | |
molecule = read_molecule(path) | |
try: | |
molecule = Chem.RemoveAllHs(molecule) | |
except: | |
pass | |
name = '.'.join(path.split('/')[-1].split('.')[:-1]) | |
inp_sdf = f'results/input_{name}.sdf' | |
except Exception as e: | |
e = str(e).replace('\'', '') | |
error = f'Could not read the molecule: {e}' | |
msg = output.ERROR_FORMAT_MSG.format(message=error) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
if molecule.GetNumAtoms() > 100: | |
error = f'Too large molecule: upper limit is 100 heavy atoms' | |
msg = output.ERROR_FORMAT_MSG.format(message=error) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
with Chem.SDWriter(inp_sdf) as w: | |
w.SetKekulize(False) | |
w.write(molecule) | |
positions, one_hot, charges = parse_molecule(molecule, is_geom=True) | |
anchors = np.zeros_like(charges) | |
anchors[selected_atoms] = 1 | |
fragment_mask = np.ones_like(charges) | |
linker_mask = np.zeros_like(charges) | |
print('Read and parsed molecule') | |
dataset = [{ | |
'uuid': '0', | |
'name': '0', | |
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device), | |
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device), | |
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device), | |
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device), | |
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device), | |
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device), | |
'num_atoms': len(positions), | |
}] * num_samples | |
dataloader = get_dataloader(dataset, batch_size=num_samples, collate_fn=collate_with_fragment_edges) | |
print('Created dataloader') | |
ddpm.edm.T = n_steps | |
if n_atoms == 0: | |
def sample_fn(_data): | |
out, _ = size_nn.forward(_data, return_loss=False) | |
probabilities = torch.softmax(out, dim=1) | |
distribution = torch.distributions.Categorical(probs=probabilities) | |
samples = distribution.sample() | |
sizes = [] | |
for label in samples.detach().cpu().numpy(): | |
sizes.append(size_nn.linker_id2size[label]) | |
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long) | |
return sizes | |
else: | |
def sample_fn(_data): | |
return torch.ones(_data['positions'].shape[0], device=device, dtype=torch.long) * n_atoms | |
for data in dataloader: | |
try: | |
generate_linkers(ddpm=ddpm, data=data, sample_fn=sample_fn, name=name, with_pocket=False) | |
except Exception as e: | |
e = str(e).replace('\'', '') | |
error = f'Caught exception while generating linkers: {e}' | |
msg = output.ERROR_FORMAT_MSG.format(message=error) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
out_files = try_to_convert_to_sdf(name, num_samples) | |
out_files = [inp_sdf] + out_files | |
out_files = [compress(out_files, name=name)] + out_files | |
choice = out_files[2] | |
return [ | |
draw_sample(choice, out_files, num_samples), | |
out_files, | |
gr.Dropdown.update( | |
choices=out_files[2:], | |
value=choice, | |
visible=True, | |
), | |
None | |
] | |
def generate_with_pocket(in_fragments, in_protein, n_steps, n_atoms, num_samples, selected_atoms): | |
# Parsing selected atoms (javascript output) | |
selected_atoms = selected_atoms.strip() | |
if selected_atoms == '': | |
selected_atoms = [] | |
else: | |
selected_atoms = list(map(int, selected_atoms.split(','))) | |
# Selecting model | |
if len(selected_atoms) == 0: | |
selected_model_name = 'pockets_difflinker' | |
else: | |
selected_model_name = 'pockets_difflinker_given_anchors' | |
print(f'Start generating with model {selected_model_name}, selected_atoms:', selected_atoms) | |
ddpm = diffusion_models[selected_model_name] | |
fragments_path = in_fragments.name | |
fragments_extension = fragments_path.split('.')[-1] | |
if fragments_extension not in ['sdf', 'pdb', 'mol', 'mol2']: | |
msg = output.INVALID_FORMAT_MSG.format(extension=fragments_extension) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
protein_path = in_protein.name | |
protein_extension = protein_path.split('.')[-1] | |
if protein_extension not in ['pdb']: | |
msg = output.INVALID_FORMAT_MSG.format(extension=protein_extension) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
try: | |
fragments_mol = read_molecule(fragments_path) | |
name = '.'.join(fragments_path.split('/')[-1].split('.')[:-1]) | |
except Exception as e: | |
e = str(e).replace('\'', '') | |
error = f'Could not read the molecule: {e}' | |
msg = output.ERROR_FORMAT_MSG.format(message=error) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
if fragments_mol.GetNumAtoms() > 100: | |
error = f'Too large molecule: upper limit is 100 heavy atoms' | |
msg = output.ERROR_FORMAT_MSG.format(message=error) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
inp_sdf = f'results/input_{name}.sdf' | |
with Chem.SDWriter(inp_sdf) as w: | |
w.SetKekulize(False) | |
w.write(fragments_mol) | |
inp_pdb = f'results/target_{name}.pdb' | |
shutil.copy(protein_path, inp_pdb) | |
frag_pos, frag_one_hot, frag_charges = parse_molecule(fragments_mol, is_geom=True) | |
pocket_pos, pocket_one_hot, pocket_charges = get_pocket(fragments_mol, protein_path) | |
print(f'Detected pocket with {len(pocket_pos)} atoms') | |
positions = np.concatenate([frag_pos, pocket_pos], axis=0) | |
one_hot = np.concatenate([frag_one_hot, pocket_one_hot], axis=0) | |
charges = np.concatenate([frag_charges, pocket_charges], axis=0) | |
anchors = np.zeros_like(charges) | |
anchors[selected_atoms] = 1 | |
fragment_only_mask = np.concatenate([ | |
np.ones_like(frag_charges), | |
np.zeros_like(pocket_charges), | |
]) | |
pocket_mask = np.concatenate([ | |
np.zeros_like(frag_charges), | |
np.ones_like(pocket_charges), | |
]) | |
linker_mask = np.concatenate([ | |
np.zeros_like(frag_charges), | |
np.zeros_like(pocket_charges), | |
]) | |
fragment_mask = np.concatenate([ | |
np.ones_like(frag_charges), | |
np.ones_like(pocket_charges), | |
]) | |
print('Read and parsed molecule') | |
dataset = [{ | |
'uuid': '0', | |
'name': '0', | |
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device), | |
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device), | |
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device), | |
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device), | |
'fragment_only_mask': torch.tensor(fragment_only_mask, dtype=const.TORCH_FLOAT, device=device), | |
'pocket_mask': torch.tensor(pocket_mask, dtype=const.TORCH_FLOAT, device=device), | |
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device), | |
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device), | |
'num_atoms': len(positions), | |
}] * num_samples | |
dataset = MOADDataset(data=dataset) | |
ddpm.val_dataset = dataset | |
batch_size = min(num_samples, MAX_BATCH_SIZE) | |
dataloader = get_dataloader(dataset, batch_size=batch_size, collate_fn=collate_with_fragment_without_pocket_edges) | |
print('Created dataloader') | |
ddpm.edm.T = n_steps | |
if n_atoms == 0: | |
def sample_fn(_data): | |
out, _ = size_nn.forward(_data, return_loss=False, with_pocket=True) | |
probabilities = torch.softmax(out, dim=1) | |
distribution = torch.distributions.Categorical(probs=probabilities) | |
samples = distribution.sample() | |
sizes = [] | |
for label in samples.detach().cpu().numpy(): | |
sizes.append(size_nn.linker_id2size[label]) | |
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long) | |
return sizes | |
else: | |
def sample_fn(_data): | |
return torch.ones(_data['positions'].shape[0], device=device, dtype=torch.long) * n_atoms | |
for batch_i, data in enumerate(dataloader): | |
try: | |
offset_idx = batch_i * batch_size | |
generate_linkers( | |
ddpm=ddpm, data=data, | |
sample_fn=sample_fn, name=name, with_pocket=True, | |
offset_idx=offset_idx, | |
) | |
except Exception as e: | |
e = str(e).replace('\'', '') | |
error = f'Caught exception while generating linkers: {e}' | |
msg = output.ERROR_FORMAT_MSG.format(message=error) | |
return [output.IFRAME_TEMPLATE.format(html=msg), None, None, None] | |
out_files = try_to_convert_to_sdf(name, num_samples) | |
out_files = [inp_sdf, inp_pdb] + out_files | |
out_files = [compress(out_files, name=name)] + out_files | |
choice = out_files[3] | |
return [ | |
draw_sample(choice, out_files, num_samples), | |
out_files, | |
gr.Dropdown.update( | |
choices=out_files[3:], | |
value=choice, | |
visible=True, | |
), | |
None | |
] | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown('# DiffLinker: Equivariant 3D-Conditional Diffusion Model for Molecular Linker Design') | |
gr.Markdown( | |
'Given a set of disconnected fragments in 3D, ' | |
'DiffLinker places missing atoms in between and designs a molecule incorporating all the initial fragments. ' | |
'Our method can link an arbitrary number of fragments, requires no information on the attachment atoms ' | |
'and linker size, and can be conditioned on the protein pockets.' | |
) | |
gr.Markdown( | |
'[**[Paper]**](https://arxiv.org/abs/2210.05274) ' | |
'[**[Code]**](https://github.com/igashov/DiffLinker)' | |
) | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown('## Input') | |
gr.Markdown('Upload the file with 3D-coordinates of the input fragments in .pdb, .mol2 or .sdf format:') | |
input_fragments_file = gr.File(file_count='single', label='Input Fragments') | |
gr.Markdown('Upload the file of the target protein in .pdb format (optionally):') | |
input_protein_file = gr.File(file_count='single', label='Target Protein (Optional)') | |
n_steps = gr.Slider( | |
minimum=MIN_N_STEPS, maximum=MAX_N_STEPS, | |
label="Number of Denoising Steps", step=10 | |
) | |
n_atoms = gr.Slider( | |
minimum=0, maximum=20, | |
label="Linker Size: DiffLinker will predict it if set to 0", | |
step=1 | |
) | |
n_samples = gr.Slider(minimum=5, maximum=50, label="Number of Samples", step=5) | |
examples = gr.Dataset( | |
components=[gr.File(visible=False), gr.File(visible=False)], | |
samples=[ | |
['examples/example_1.sdf', ''], | |
['examples/example_2.sdf', ''], | |
['examples/3hz1_fragments.sdf', 'examples/3hz1_protein.pdb'], | |
['examples/5ou2_fragments.sdf', 'examples/5ou2_protein.pdb'], | |
], | |
type='values', | |
headers=['Input Fragments', 'Target Protein'], | |
) | |
button = gr.Button('Generate Linker!') | |
gr.Markdown('') | |
gr.Markdown('## Output Files') | |
gr.Markdown('Download files with the generated molecules here:') | |
output_files = gr.File(file_count='multiple', label='Output Files', interactive=False) | |
hidden = gr.Textbox(visible=False) | |
with gr.Column(): | |
gr.Markdown('## Visualization') | |
gr.Markdown('**Hint:** click on atoms to select anchor points (optionally)') | |
samples = gr.Dropdown( | |
choices=[], | |
value=None, | |
type='value', | |
multiselect=False, | |
visible=False, | |
interactive=True, | |
label='Samples' | |
) | |
visualization = gr.HTML() | |
input_fragments_file.change( | |
fn=show_input, | |
inputs=[input_fragments_file, input_protein_file], | |
outputs=[visualization, samples, hidden], | |
) | |
input_protein_file.change( | |
fn=show_input, | |
inputs=[input_fragments_file, input_protein_file], | |
outputs=[visualization, samples, hidden], | |
) | |
input_fragments_file.clear( | |
fn=clear_fragments_input, | |
inputs=[input_protein_file], | |
outputs=[input_fragments_file, visualization, samples, hidden], | |
) | |
input_protein_file.clear( | |
fn=clear_protein_input, | |
inputs=[input_fragments_file], | |
outputs=[input_protein_file, visualization, samples, hidden], | |
) | |
examples.click( | |
fn=click_on_example, | |
inputs=[examples], | |
outputs=[input_fragments_file, input_protein_file, visualization, samples, hidden] | |
) | |
button.click( | |
fn=generate, | |
inputs=[input_fragments_file, input_protein_file, n_steps, n_atoms, n_samples, hidden], | |
outputs=[visualization, output_files, samples, hidden], | |
_js=output.RETURN_SELECTION_JS, | |
) | |
samples.select( | |
fn=draw_sample, | |
inputs=[samples, output_files, n_samples], | |
outputs=[visualization], | |
) | |
demo.load(_js=output.STARTUP_JS) | |
demo.launch(server_name=args.ip) | |