Spaces:
Runtime error
Runtime error
from speechbrain.pretrained.interfaces import foreign_class | |
import gradio as gr | |
import os | |
import warnings | |
warnings.filterwarnings("ignore") | |
# Function to get the list of audio files in the 'rec/' directory | |
def get_audio_files_list(directory="rec"): | |
try: | |
return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))] | |
except FileNotFoundError: | |
print("The 'rec' directory does not exist. Please make sure it is the correct path.") | |
return [] | |
# Loading the speechbrain emotion detection model | |
learner = foreign_class( | |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", | |
pymodule_file="custom_interface.py", | |
classname="CustomEncoderWav2vec2Classifier" | |
) | |
# Building prediction function for Gradio | |
emotion_dict = { | |
'sad': 'Sad', | |
'hap': 'Happy', | |
'ang': 'Anger', | |
'fea': 'Fear', | |
'sur': 'Surprised', | |
'neu': 'Neutral' | |
} | |
def predict_emotion(selected_audio): | |
file_path = os.path.join("rec", selected_audio) | |
out_prob, score, index, text_lab = learner.classify_file(file_path) | |
emotion = emotion_dict[text_lab[0]] | |
return emotion, file_path # Return both emotion and file path | |
# Get the list of audio files for the dropdown | |
audio_files_list = get_audio_files_list() | |
# Loading Gradio interface | |
inputs = gr.Dropdown(label="Select Audio", choices=audio_files_list) | |
outputs = [gr.outputs.Textbox(label="Predicted Emotion"), gr.outputs.Audio(label="Play Audio")] | |
title = "ML Speech Emotion Detection" | |
description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio." | |
interface = gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description) | |
interface.launch() |