Spaces:
Runtime error
Runtime error
import mediapipe as mp | |
from utils import read_n_resize | |
from random import sample | |
import cv2, numpy as np | |
BG_IMG = [ | |
'examples/back1.jpg', | |
'examples/back2.jpg', | |
'examples/back3.jpg', | |
'examples/back4.jpg', | |
'examples/back5.jpg', | |
'examples/back6.jpg' | |
] | |
def mp_selfi_segment_fn(image): | |
mp_selfie_segmentation = mp.solutions.selfie_segmentation | |
with mp_selfie_segmentation.SelfieSegmentation( | |
model_selection=0) as selfie_segmentation: | |
image = read_n_resize(image, read=False) | |
image_height, image_width, _ = image.shape | |
# get a random background picture to fill original background | |
backs = cv2.imread(sample(BG_IMG, 1)[0]) | |
backs = cv2.resize(backs, (image_width, image_height)) | |
backs = cv2.cvtColor(backs, cv2.COLOR_BGR2RGB) | |
# pass to model | |
results = selfie_segmentation.process(image) | |
# Draw selfie segmentation on the background image. | |
# To improve segmentation around boundaries, consider applying a joint | |
# bilateral filter to "results.segmentation_mask" with "image". | |
condition = np.stack((results.segmentation_mask,) * 3, axis=-1) > 0.1 | |
# Generate solid color images for showing the output selfie segmentation mask. | |
fg_image = np.zeros(image.shape, dtype=np.uint8) | |
fg_image[:] = image | |
bg_image = np.zeros(image.shape, dtype=np.uint8) | |
bg_image[:] = backs | |
output_image = np.where(condition, fg_image, bg_image) | |
return output_image |