LivePortrait / src /gradio_pipeline.py
cleardusk's picture
Move tensors to gpu (#3)
8f7fee0 verified
# coding: utf-8
"""
Pipeline for gradio
"""
import gradio as gr
from .config.argument_config import ArgumentConfig
from .live_portrait_pipeline import LivePortraitPipeline
from .utils.io import load_img_online
from .utils.rprint import rlog as log
from .utils.crop import prepare_paste_back, paste_back
from .utils.camera import get_rotation_matrix
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
def update_args(args, user_args):
"""update the args according to user inputs
"""
for k, v in user_args.items():
if hasattr(args, k):
setattr(args, k, v)
return args
class GradioPipeline(LivePortraitPipeline):
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
super().__init__(inference_cfg, crop_cfg)
# self.live_portrait_wrapper = self.live_portrait_wrapper
self.args = args
# for single image retargeting
self.start_prepare = False
self.f_s_user = None
self.x_c_s_info_user = None
self.x_s_user = None
self.source_lmk_user = None
self.mask_ori = None
self.img_rgb = None
self.crop_M_c2o = None
def execute_video(
self,
input_image_path,
input_video_path,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
):
""" for video driven potrait animation
"""
if input_image_path is not None and input_video_path is not None:
args_user = {
'source_image': input_image_path,
'driving_info': input_video_path,
'flag_relative': flag_relative_input,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
}
# update config from user input
self.args = update_args(self.args, args_user)
self.live_portrait_wrapper.update_config(self.args.__dict__)
self.cropper.update_config(self.args.__dict__)
# video driven animation
video_path, video_path_concat = self.execute(self.args)
# gr.Info("Run successfully!", duration=2)
return video_path, video_path_concat,
else:
raise gr.Error("The input source portrait or driving video hasn't been prepared yet 💥!", duration=5)
def execute_image(self, input_eye_ratio: float, input_lip_ratio: float):
""" for single image retargeting
"""
if input_eye_ratio is None or input_eye_ratio is None:
raise gr.Error("Invalid ratio input 💥!", duration=5)
elif self.f_s_user is None:
if self.start_prepare:
raise gr.Error(
"The source portrait is under processing 💥! Please wait for a second.",
duration=5
)
else:
raise gr.Error(
"The source portrait hasn't been prepared yet 💥! Please scroll to the top of the page to upload.",
duration=5
)
else:
x_s_user = self.x_s_user.to("cuda")
f_s_user = self.f_s_user.to("cuda")
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio([[input_eye_ratio]], self.source_lmk_user)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s_user, combined_eye_ratio_tensor)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio([[input_lip_ratio]], self.source_lmk_user)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor)
num_kp = x_s_user.shape[1]
# default: use x_s
x_d_new = x_s_user + eyes_delta.reshape(-1, num_kp, 3) + lip_delta.reshape(-1, num_kp, 3)
# D(W(f_s; x_s, x′_d))
out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
out = self.live_portrait_wrapper.parse_output(out['out'])[0]
out_to_ori_blend = paste_back(out, self.crop_M_c2o, self.img_rgb, self.mask_ori)
# gr.Info("Run successfully!", duration=2)
return out, out_to_ori_blend
def prepare_retargeting(self, input_image_path, flag_do_crop = True):
""" for single image retargeting
"""
if input_image_path is not None:
# gr.Info("Upload successfully!", duration=2)
self.start_prepare = True
inference_cfg = self.live_portrait_wrapper.cfg
######## process source portrait ########
img_rgb = load_img_online(input_image_path, mode='rgb', max_dim=1280, n=16)
log(f"Load source image from {input_image_path}.")
crop_info = self.cropper.crop_single_image(img_rgb)
if flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
else:
I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
############################################
# record global info for next time use
self.f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
self.x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
self.x_s_info_user = x_s_info
self.source_lmk_user = crop_info['lmk_crop']
self.img_rgb = img_rgb
self.crop_M_c2o = crop_info['M_c2o']
self.mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
# update slider
eye_close_ratio = calc_eye_close_ratio(self.source_lmk_user[None])
eye_close_ratio = float(eye_close_ratio.squeeze(0).mean())
lip_close_ratio = calc_lip_close_ratio(self.source_lmk_user[None])
lip_close_ratio = float(lip_close_ratio.squeeze(0).mean())
# for vis
self.I_s_vis = self.live_portrait_wrapper.parse_output(I_s)[0]
return eye_close_ratio, lip_close_ratio, self.I_s_vis
else:
# when press the clear button, go here
return 0.8, 0.8, self.I_s_vis