|
import gradio as gr |
|
import spaces |
|
from gradio_litmodel3d import LitModel3D |
|
|
|
import os |
|
import shutil |
|
os.environ['SPCONV_ALGO'] = 'native' |
|
from typing import * |
|
import torch |
|
import numpy as np |
|
import imageio |
|
from easydict import EasyDict as edict |
|
from PIL import Image |
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
from trellis.representations import Gaussian, MeshExtractResult |
|
from trellis.utils import render_utils, postprocessing_utils |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') |
|
os.makedirs(TMP_DIR, exist_ok=True) |
|
|
|
|
|
def start_session(req: gr.Request): |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
os.makedirs(user_dir, exist_ok=True) |
|
|
|
|
|
def end_session(req: gr.Request): |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
shutil.rmtree(user_dir) |
|
|
|
|
|
def preprocess_image(image: Image.Image) -> Image.Image: |
|
""" |
|
Preprocess the input image. |
|
|
|
Args: |
|
image (Image.Image): The input image. |
|
|
|
Returns: |
|
Image.Image: The preprocessed image. |
|
""" |
|
processed_image = pipeline.preprocess_image(image) |
|
return processed_image |
|
|
|
|
|
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: |
|
""" |
|
Preprocess a list of input images. |
|
|
|
Args: |
|
images (List[Tuple[Image.Image, str]]): The input images. |
|
|
|
Returns: |
|
List[Image.Image]: The preprocessed images. |
|
""" |
|
images = [image[0] for image in images] |
|
processed_images = [pipeline.preprocess_image(image) for image in images] |
|
return processed_images |
|
|
|
|
|
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: |
|
return { |
|
'gaussian': { |
|
**gs.init_params, |
|
'_xyz': gs._xyz.cpu().numpy(), |
|
'_features_dc': gs._features_dc.cpu().numpy(), |
|
'_scaling': gs._scaling.cpu().numpy(), |
|
'_rotation': gs._rotation.cpu().numpy(), |
|
'_opacity': gs._opacity.cpu().numpy(), |
|
}, |
|
'mesh': { |
|
'vertices': mesh.vertices.cpu().numpy(), |
|
'faces': mesh.faces.cpu().numpy(), |
|
}, |
|
} |
|
|
|
|
|
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: |
|
gs = Gaussian( |
|
aabb=state['gaussian']['aabb'], |
|
sh_degree=state['gaussian']['sh_degree'], |
|
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], |
|
scaling_bias=state['gaussian']['scaling_bias'], |
|
opacity_bias=state['gaussian']['opacity_bias'], |
|
scaling_activation=state['gaussian']['scaling_activation'], |
|
) |
|
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') |
|
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') |
|
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') |
|
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') |
|
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') |
|
|
|
mesh = edict( |
|
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), |
|
faces=torch.tensor(state['mesh']['faces'], device='cuda'), |
|
) |
|
|
|
return gs, mesh |
|
|
|
|
|
def get_seed(randomize_seed: bool, seed: int) -> int: |
|
""" |
|
Get the random seed. |
|
""" |
|
return np.random.randint(0, MAX_SEED) if randomize_seed else seed |
|
|
|
|
|
@spaces.GPU |
|
def image_to_3d( |
|
image: Image.Image, |
|
multiimages: List[Tuple[Image.Image, str]], |
|
is_multiimage: bool, |
|
seed: int, |
|
ss_guidance_strength: float, |
|
ss_sampling_steps: int, |
|
slat_guidance_strength: float, |
|
slat_sampling_steps: int, |
|
multiimage_algo: Literal["multidiffusion", "stochastic"], |
|
req: gr.Request, |
|
) -> Tuple[dict, str]: |
|
""" |
|
Convert an image to a 3D model. |
|
|
|
Args: |
|
image (Image.Image): The input image. |
|
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. |
|
is_multiimage (bool): Whether is in multi-image mode. |
|
seed (int): The random seed. |
|
ss_guidance_strength (float): The guidance strength for sparse structure generation. |
|
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. |
|
slat_guidance_strength (float): The guidance strength for structured latent generation. |
|
slat_sampling_steps (int): The number of sampling steps for structured latent generation. |
|
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. |
|
|
|
Returns: |
|
dict: The information of the generated 3D model. |
|
str: The path to the video of the 3D model. |
|
""" |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
if not is_multiimage: |
|
outputs = pipeline.run( |
|
image, |
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
) |
|
else: |
|
outputs = pipeline.run_multi_image( |
|
[image[0] for image in multiimages], |
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
mode=multiimage_algo, |
|
) |
|
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] |
|
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] |
|
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] |
|
video_path = os.path.join(user_dir, 'sample.mp4') |
|
imageio.mimsave(video_path, video, fps=15) |
|
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) |
|
torch.cuda.empty_cache() |
|
return state, video_path |
|
|
|
|
|
@spaces.GPU(duration=90) |
|
def extract_glb( |
|
state: dict, |
|
mesh_simplify: float, |
|
texture_size: int, |
|
req: gr.Request, |
|
) -> Tuple[str, str]: |
|
""" |
|
Extract a GLB file from the 3D model. |
|
|
|
Args: |
|
state (dict): The state of the generated 3D model. |
|
mesh_simplify (float): The mesh simplification factor. |
|
texture_size (int): The texture resolution. |
|
|
|
Returns: |
|
str: The path to the extracted GLB file. |
|
""" |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
gs, mesh = unpack_state(state) |
|
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) |
|
glb_path = os.path.join(user_dir, 'sample.glb') |
|
glb.export(glb_path) |
|
torch.cuda.empty_cache() |
|
return glb_path, glb_path |
|
|
|
|
|
@spaces.GPU |
|
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: |
|
""" |
|
Extract a Gaussian file from the 3D model. |
|
|
|
Args: |
|
state (dict): The state of the generated 3D model. |
|
|
|
Returns: |
|
str: The path to the extracted Gaussian file. |
|
""" |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
gs, _ = unpack_state(state) |
|
gaussian_path = os.path.join(user_dir, 'sample.ply') |
|
gs.save_ply(gaussian_path) |
|
torch.cuda.empty_cache() |
|
return gaussian_path, gaussian_path |
|
|
|
|
|
def prepare_multi_example() -> List[Image.Image]: |
|
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) |
|
images = [] |
|
for case in multi_case: |
|
_images = [] |
|
for i in range(1, 4): |
|
img = Image.open(f'assets/example_multi_image/{case}_{i}.png') |
|
W, H = img.size |
|
img = img.resize((int(W / H * 512), 512)) |
|
_images.append(np.array(img)) |
|
images.append(Image.fromarray(np.concatenate(_images, axis=1))) |
|
return images |
|
|
|
|
|
def split_image(image: Image.Image) -> List[Image.Image]: |
|
""" |
|
Split an image into multiple views. |
|
""" |
|
image = np.array(image) |
|
alpha = image[..., 3] |
|
alpha = np.any(alpha>0, axis=0) |
|
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() |
|
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() |
|
images = [] |
|
for s, e in zip(start_pos, end_pos): |
|
images.append(Image.fromarray(image[:, s:e+1])) |
|
return [preprocess_image(image) for image in images] |
|
|
|
|
|
with gr.Blocks(delete_cache=(600, 600)) as demo: |
|
gr.Markdown(""" |
|
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/) |
|
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background. |
|
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. |
|
|
|
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction. |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Tabs() as input_tabs: |
|
with gr.Tab(label="Single Image", id=0) as single_image_input_tab: |
|
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300) |
|
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab: |
|
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) |
|
gr.Markdown(""" |
|
Input different views of the object in separate images. |
|
|
|
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.* |
|
""") |
|
|
|
with gr.Accordion(label="Generation Settings", open=False): |
|
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) |
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
gr.Markdown("Stage 1: Sparse Structure Generation") |
|
with gr.Row(): |
|
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) |
|
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
gr.Markdown("Stage 2: Structured Latent Generation") |
|
with gr.Row(): |
|
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) |
|
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") |
|
|
|
generate_btn = gr.Button("Generate") |
|
|
|
with gr.Accordion(label="GLB Extraction Settings", open=False): |
|
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) |
|
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) |
|
|
|
with gr.Row(): |
|
extract_glb_btn = gr.Button("Extract GLB", interactive=False) |
|
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) |
|
gr.Markdown(""" |
|
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.* |
|
""") |
|
|
|
with gr.Column(): |
|
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) |
|
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300) |
|
|
|
with gr.Row(): |
|
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) |
|
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) |
|
|
|
is_multiimage = gr.State(False) |
|
output_buf = gr.State() |
|
|
|
|
|
with gr.Row() as single_image_example: |
|
examples = gr.Examples( |
|
examples=[ |
|
f'assets/example_image/{image}' |
|
for image in os.listdir("assets/example_image") |
|
], |
|
inputs=[image_prompt], |
|
fn=preprocess_image, |
|
outputs=[image_prompt], |
|
run_on_click=True, |
|
examples_per_page=64, |
|
) |
|
with gr.Row(visible=False) as multiimage_example: |
|
examples_multi = gr.Examples( |
|
examples=prepare_multi_example(), |
|
inputs=[image_prompt], |
|
fn=split_image, |
|
outputs=[multiimage_prompt], |
|
run_on_click=True, |
|
examples_per_page=8, |
|
) |
|
|
|
|
|
demo.load(start_session) |
|
demo.unload(end_session) |
|
|
|
single_image_input_tab.select( |
|
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]), |
|
outputs=[is_multiimage, single_image_example, multiimage_example] |
|
) |
|
multiimage_input_tab.select( |
|
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]), |
|
outputs=[is_multiimage, single_image_example, multiimage_example] |
|
) |
|
|
|
image_prompt.upload( |
|
preprocess_image, |
|
inputs=[image_prompt], |
|
outputs=[image_prompt], |
|
) |
|
multiimage_prompt.upload( |
|
preprocess_images, |
|
inputs=[multiimage_prompt], |
|
outputs=[multiimage_prompt], |
|
) |
|
|
|
generate_btn.click( |
|
get_seed, |
|
inputs=[randomize_seed, seed], |
|
outputs=[seed], |
|
).then( |
|
image_to_3d, |
|
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo], |
|
outputs=[output_buf, video_output], |
|
).then( |
|
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), |
|
outputs=[extract_glb_btn, extract_gs_btn], |
|
) |
|
|
|
video_output.clear( |
|
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]), |
|
outputs=[extract_glb_btn, extract_gs_btn], |
|
) |
|
|
|
extract_glb_btn.click( |
|
extract_glb, |
|
inputs=[output_buf, mesh_simplify, texture_size], |
|
outputs=[model_output, download_glb], |
|
).then( |
|
lambda: gr.Button(interactive=True), |
|
outputs=[download_glb], |
|
) |
|
|
|
extract_gs_btn.click( |
|
extract_gaussian, |
|
inputs=[output_buf], |
|
outputs=[model_output, download_gs], |
|
).then( |
|
lambda: gr.Button(interactive=True), |
|
outputs=[download_gs], |
|
) |
|
|
|
model_output.clear( |
|
lambda: gr.Button(interactive=False), |
|
outputs=[download_glb], |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") |
|
pipeline.cuda() |
|
try: |
|
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) |
|
except: |
|
pass |
|
demo.launch() |
|
|