Spaces:
Runtime error
Runtime error
File size: 15,801 Bytes
f3f614f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import json
import tempfile
import requests
import streamlit as st
from lagent.schema import AgentStatusCode
from pyvis.network import Network
# Function to create the network graph
def create_network_graph(nodes, adjacency_list):
net = Network(height='500px',
width='60%',
bgcolor='white',
font_color='black')
for node_id, node_data in nodes.items():
if node_id in ['root', 'response']:
title = node_data.get('content', node_id)
else:
title = node_data['detail']['content']
net.add_node(node_id,
label=node_id,
title=title,
color='#FF5733',
size=25)
for node_id, neighbors in adjacency_list.items():
for neighbor in neighbors:
if neighbor['name'] in nodes:
net.add_edge(node_id, neighbor['name'])
net.show_buttons(filter_=['physics'])
return net
# Function to draw the graph and return the HTML file path
def draw_graph(net):
path = tempfile.mktemp(suffix='.html')
net.save_graph(path)
return path
def streaming(raw_response):
for chunk in raw_response.iter_lines(chunk_size=8192,
decode_unicode=False,
delimiter=b'\n'):
if chunk:
decoded = chunk.decode('utf-8')
if decoded == '\r':
continue
if decoded[:6] == 'data: ':
decoded = decoded[6:]
elif decoded.startswith(': ping - '):
continue
response = json.loads(decoded)
yield (response['response'], response['current_node'])
# Initialize Streamlit session state
if 'queries' not in st.session_state:
st.session_state['queries'] = []
st.session_state['responses'] = []
st.session_state['graphs_html'] = []
st.session_state['nodes_list'] = []
st.session_state['adjacency_list_list'] = []
st.session_state['history'] = []
st.session_state['already_used_keys'] = list()
# Set up page layout
st.set_page_config(layout='wide')
st.title('MindSearch-思索')
# Function to update chat
def update_chat(query):
with st.chat_message('user'):
st.write(query)
if query not in st.session_state['queries']:
# Mock data to simulate backend response
# response, history, nodes, adjacency_list
st.session_state['queries'].append(query)
st.session_state['responses'].append([])
history = None
# 暂不支持多轮
message = [dict(role='user', content=query)]
url = 'http://localhost:8002/solve'
headers = {'Content-Type': 'application/json'}
data = {'inputs': message}
raw_response = requests.post(url,
headers=headers,
data=json.dumps(data),
timeout=20,
stream=True)
for resp in streaming(raw_response):
agent_return, node_name = resp
if node_name and node_name in ['root', 'response']:
continue
nodes = agent_return['nodes']
adjacency_list = agent_return['adj']
response = agent_return['response']
history = agent_return['inner_steps']
if nodes:
net = create_network_graph(nodes, adjacency_list)
graph_html_path = draw_graph(net)
with open(graph_html_path, encoding='utf-8') as f:
graph_html = f.read()
else:
graph_html = None
if 'graph_placeholder' not in st.session_state:
st.session_state['graph_placeholder'] = st.empty()
if 'expander_placeholder' not in st.session_state:
st.session_state['expander_placeholder'] = st.empty()
if graph_html:
with st.session_state['expander_placeholder'].expander(
'Show Graph', expanded=False):
st.session_state['graph_placeholder']._html(graph_html,
height=500)
if 'container_placeholder' not in st.session_state:
st.session_state['container_placeholder'] = st.empty()
with st.session_state['container_placeholder'].container():
if 'columns_placeholder' not in st.session_state:
st.session_state['columns_placeholder'] = st.empty()
col1, col2 = st.session_state['columns_placeholder'].columns(
[2, 1])
with col1:
if 'planner_placeholder' not in st.session_state:
st.session_state['planner_placeholder'] = st.empty()
if 'session_info_temp' not in st.session_state:
st.session_state['session_info_temp'] = ''
if not node_name:
if agent_return['state'] in [
AgentStatusCode.STREAM_ING,
AgentStatusCode.ANSWER_ING
]:
st.session_state['session_info_temp'] = response
elif agent_return[
'state'] == AgentStatusCode.PLUGIN_START:
thought = st.session_state[
'session_info_temp'].split('```')[0]
if agent_return['response'].startswith('```'):
st.session_state[
'session_info_temp'] = thought + '\n' + response
elif agent_return[
'state'] == AgentStatusCode.PLUGIN_RETURN:
assert agent_return['inner_steps'][-1][
'role'] == 'environment'
st.session_state[
'session_info_temp'] += '\n' + agent_return[
'inner_steps'][-1]['content']
st.session_state['planner_placeholder'].markdown(
st.session_state['session_info_temp'])
if agent_return[
'state'] == AgentStatusCode.PLUGIN_RETURN:
st.session_state['responses'][-1].append(
st.session_state['session_info_temp'])
st.session_state['session_info_temp'] = ''
else:
st.session_state['planner_placeholder'].markdown(
st.session_state['responses'][-1][-1] if
not st.session_state['session_info_temp'] else st.
session_state['session_info_temp'])
with col2:
if 'selectbox_placeholder' not in st.session_state:
st.session_state['selectbox_placeholder'] = st.empty()
if 'searcher_placeholder' not in st.session_state:
st.session_state['searcher_placeholder'] = st.empty()
# st.session_state['searcher_placeholder'].markdown('')
if node_name:
selected_node_key = f"selected_node_{len(st.session_state['queries'])}_{node_name}"
if selected_node_key not in st.session_state:
st.session_state[selected_node_key] = node_name
if selected_node_key not in st.session_state[
'already_used_keys']:
selected_node = st.session_state[
'selectbox_placeholder'].selectbox(
'Select a node:',
list(nodes.keys()),
key=f'key_{selected_node_key}',
index=list(nodes.keys()).index(node_name))
st.session_state['already_used_keys'].append(
selected_node_key)
else:
selected_node = node_name
st.session_state[selected_node_key] = selected_node
if selected_node in nodes:
node = nodes[selected_node]
agent_return = node['detail']
node_info_key = f'{selected_node}_info'
if 'node_info_temp' not in st.session_state:
st.session_state[
'node_info_temp'] = f'### {agent_return["content"]}'
if node_info_key not in st.session_state:
st.session_state[node_info_key] = []
if agent_return['state'] in [
AgentStatusCode.STREAM_ING,
AgentStatusCode.ANSWER_ING
]:
st.session_state[
'node_info_temp'] = agent_return[
'response']
elif agent_return[
'state'] == AgentStatusCode.PLUGIN_START:
thought = st.session_state[
'node_info_temp'].split('```')[0]
if agent_return['response'].startswith('```'):
st.session_state[
'node_info_temp'] = thought + '\n' + agent_return[
'response']
elif agent_return[
'state'] == AgentStatusCode.PLUGIN_END:
thought = st.session_state[
'node_info_temp'].split('```')[0]
if isinstance(agent_return['response'], dict):
st.session_state[
'node_info_temp'] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```' # noqa: E501
elif agent_return[
'state'] == AgentStatusCode.PLUGIN_RETURN:
assert agent_return['inner_steps'][-1][
'role'] == 'environment'
st.session_state[node_info_key].append(
('thought',
st.session_state['node_info_temp']))
st.session_state[node_info_key].append(
('observation',
agent_return['inner_steps'][-1]['content']
))
st.session_state['searcher_placeholder'].markdown(
st.session_state['node_info_temp'])
if agent_return['state'] == AgentStatusCode.END:
st.session_state[node_info_key].append(
('answer',
st.session_state['node_info_temp']))
st.session_state['node_info_temp'] = ''
if st.session_state['session_info_temp']:
st.session_state['responses'][-1].append(
st.session_state['session_info_temp'])
st.session_state['session_info_temp'] = ''
# st.session_state['responses'][-1] = '\n'.join(st.session_state['responses'][-1])
st.session_state['graphs_html'].append(graph_html)
st.session_state['nodes_list'].append(nodes)
st.session_state['adjacency_list_list'].append(adjacency_list)
st.session_state['history'] = history
def display_chat_history():
for i, query in enumerate(st.session_state['queries'][-1:]):
# with st.chat_message('assistant'):
if st.session_state['graphs_html'][i]:
with st.session_state['expander_placeholder'].expander(
'Show Graph', expanded=False):
st.session_state['graph_placeholder']._html(
st.session_state['graphs_html'][i], height=500)
with st.session_state['container_placeholder'].container():
col1, col2 = st.session_state['columns_placeholder'].columns(
[2, 1])
with col1:
st.session_state['planner_placeholder'].markdown(
st.session_state['responses'][-1][-1])
with col2:
selected_node_key = st.session_state['already_used_keys'][
-1]
st.session_state['selectbox_placeholder'] = st.empty()
selected_node = st.session_state[
'selectbox_placeholder'].selectbox(
'Select a node:',
list(st.session_state['nodes_list'][i].keys()),
key=f'replay_key_{i}',
index=list(st.session_state['nodes_list'][i].keys(
)).index(st.session_state[selected_node_key]))
st.session_state[selected_node_key] = selected_node
if selected_node not in [
'root', 'response'
] and selected_node in st.session_state['nodes_list'][i]:
node_info_key = f'{selected_node}_info'
for item in st.session_state[node_info_key]:
if item[0] in ['thought', 'answer']:
st.session_state[
'searcher_placeholder'] = st.empty()
st.session_state[
'searcher_placeholder'].markdown(item[1])
elif item[0] == 'observation':
st.session_state[
'observation_expander'] = st.empty()
with st.session_state[
'observation_expander'].expander(
'Results'):
st.write(item[1])
# st.session_state['searcher_placeholder'].markdown(st.session_state[node_info_key])
def clean_history():
st.session_state['queries'] = []
st.session_state['responses'] = []
st.session_state['graphs_html'] = []
st.session_state['nodes_list'] = []
st.session_state['adjacency_list_list'] = []
st.session_state['history'] = []
st.session_state['already_used_keys'] = list()
for k in st.session_state:
if k.endswith('placeholder') or k.endswith('_info'):
del st.session_state[k]
# Main function to run the Streamlit app
def main():
st.sidebar.title('Model Control')
col1, col2 = st.columns([4, 1])
with col1:
user_input = st.chat_input('Enter your query:')
with col2:
if st.button('Clear History'):
clean_history()
if user_input:
update_chat(user_input)
display_chat_history()
if __name__ == '__main__':
main()
|